DOI QR코드

DOI QR Code

Current status on carbon metabolic engineering in plants

식물의 탄소대사공학 연구동향

  • Received : 2010.06.01
  • Accepted : 2010.06.08
  • Published : 2010.06.30

Abstract

Yield productivity of staple crops must be increased at least 50% by 2050, in order to feed the world population which is expected to reach 90 billions. Photosynthetic carbon assimilation and carbohydrate metabolism leading to the production of starch would be the final frontier to quest for new sources of technology enabling such a drastic increase of crop productivity. In this review, attempts to genetically engineer plant photosynthetic carbon reduction cycle and metabolic pathways to increase starch production are introduced.

Keywords

References

  1. Andrews JT, Whitney SM (2003) Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplases of higher plants. Arch Biochem Biophys 414:159-162 https://doi.org/10.1016/S0003-9861(03)00100-0
  2. Ballicora MA, Frueauf JB, Fu Y, Schurmann P, Preiss J (2000) Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin. J Biol Chem 275:1315-1320 https://doi.org/10.1074/jbc.275.2.1315
  3. Ballicora MA, Iglesias AA, Preiss J (2003) ADP-glucose pyrophosphorylase: a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67:213-225 https://doi.org/10.1128/MMBR.67.2.213-225.2003
  4. Ballicora MA, Iglesias AA, Preiss J (2004) ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynthesis Res 79:1-24 https://doi.org/10.1023/B:PRES.0000011916.67519.58
  5. Bender J, Heertstein U, Black CR (1999) Growth and yield responses of spring wheat to increasing carbon dioxide, ozon and physiological stresses: a statistical anaylsis 'ESPACE-wheat' results. Eur J Agronomy 10:185-195 https://doi.org/10.1016/S1161-0301(99)00009-X
  6. Evans LT (1993) "Crop Evolution, Adaptation and Yield: CUP, Cambridge, MA, USA
  7. Evans LT (1998) Greater crop production: whence and whither?. In "Feeding a World Population of More Than Eight Billion People - A Challenge to Science" eds J.C. Waterlow, D.G. Armstrong, L. Fowdnand & R. Riley, pp. 89-97. Oxford University Press, Cary, NC, USA
  8. Evans LT, Dunstone RL (1970) Some physiological aspects of evolution in wheat. Aus J Biol Science 23:725-741 https://doi.org/10.1071/BI9700725
  9. Fell D (1997) Understanding the Control of Metabolism. Portland Press, London
  10. Fu Y, Ballicora MA, Leykam JF, Preiss J (1998) Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J Biol Chem 273:25045-25052 https://doi.org/10.1074/jbc.273.39.25045
  11. Greene TW, Kavakli IH, Kahn ML, Okita TW (1998) Generation of up-regulated allosteric variants of potato ADP-glucose pyrophosphorylase by reversion genetics. Proc Natl Acad Sci 95:10322-10327 https://doi.org/10.1073/pnas.95.17.10322
  12. Haake V, Zrenner R, Sonnewald U, Stitt M (1998) A moderate decrease of plastid aldolase activity inhibits photosynthesis alters the levels of sugars and starch and inhibits growth of postato plants. Plant J. 14:147-157 https://doi.org/10.1046/j.1365-313X.1998.00089.x
  13. Harrison EP, Willingham NM, Lloyd JC, Raines CA (1998) Reduced sedoheptulose -1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carboyhdrate partitioning. Planta 204:27-36
  14. Hendriks J, Kolbe A, Gibon Y, Stitt M, Geigenberger P (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol 133:838-849 https://doi.org/10.1104/pp.103.024513
  15. Henkes S, Sonnerwald U, Badur R, Flachmann R, Stitt M (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13:535-551 https://doi.org/10.1105/tpc.13.3.535
  16. Hudson GS, Evans JR, Caemmerer S, von Arvidsson YBC, Andrew TJ (1992) Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants. Plant Physiol 98:294-302 https://doi.org/10.1104/pp.98.1.294
  17. James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215-222 https://doi.org/10.1016/S1369-5266(03)00042-6
  18. Kebeish R, Niessen M, Thiruveedhi K, Bari T, Hirsch H-J, Rosenkranz R, Stabler N, Schonfeld B, Kreuzaler F, Perterhansel C (2007) Chloroplastic photoresiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nature Biotechnol. 25:593-599. https://doi.org/10.1038/nbt1299
  19. Krapp A, Chaves MM, David MM, Rodriguez ML, Pereira JS, Stitt M (1994) Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with 'antisense' rbcS. VII. Impact on photosynthesis and growth in tobacco growing under extreme high irradiance and high temperature. Plant Cell Environ 17:945-953 https://doi.org/10.1111/j.1365-3040.1994.tb00323.x
  20. Lee S-M, Ryu Y-H, Kim S-I, Okita TW, Kim D (2009) Kinetic and regulatory properties of plant ADP-glucose pyrophosphorylase genetically modified by heterologous expression of potato upreg mutants in vitro and in vivo. Plant Cell Tiss Organ Cult 96:161-170 https://doi.org/10.1007/s11240-008-9472-z
  21. Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU, Beckmann R, Hayer-Hartl M (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463:197-202 https://doi.org/10.1038/nature08651
  22. Meyer FD, Talbert LE, Martin JM, Lanning SP, Greene TW, Giroux MJ (1007) Field evaluation of transgenic wheat expressing a modified ADP-glucose pyrophosphorylase large subunit. Crop Sci 47:336-342 https://doi.org/10.2135/cropsci2006.03.0160
  23. Mitchell RAC, Black CR, Burkart S, Burke JI, Donnelly A, de Temmerman L, Fangmeier A, Mulholland BJ Theobald JC, van Oijen M (1999) Photosynthetic responses in spring wheat grwon under elevated CO2 concentrations and stress conditions in the European, multiple-site experiment ‘ESPACE-wheat’. Eur J Agron 10:205-214 https://doi.org/10.1016/S1161-0301(99)00010-6
  24. Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of cyanobacterial fructose-1,6-/Sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth Nature Biotechnol. 19:965-969 https://doi.org/10.1038/nbt1001-965
  25. Murchie E, Yang J, Hubbart S, Horton P, Peng S (2002) Are there associations between grain-filling rate and photosynthesis in the flag leaves of field-grown rice? J Exp Bot 53:2217-2224 https://doi.org/10.1093/jxb/erf064
  26. Obana Y, Omoto D, Kato C, Matsumoto K, Nagai Y, Kavakli IH. Hamada S, Edwards GE, Okita TW, Matsui H, Ito H (2006) Enhanced turnover of transitory starch by expression of up-regulated ADP-glucose pyrophosaporylase in Arabidopsis thaliana. Plant Science 170:1-11 https://doi.org/10.1016/j.plantsci.2005.07.019
  27. Portis AR, Chon CJA, Mosbac A, Heldt HW (1977) Fructose- and sedoheptulose- bisphosphatase. The sites of a possible control of $CO_2$ fixation by light dependent changes of the stromal $Mg^{+2}$ concentration. Biochim Biophys Acta 461:313-325 https://doi.org/10.1016/0005-2728(77)90181-5
  28. Portis AR, Parry MA (2007) Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. Photsynth. Res. 94:121-143 https://doi.org/10.1007/s11120-007-9225-6
  29. Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419-458 https://doi.org/10.1146/annurev.mi.38.100184.002223
  30. Preiss J (1988) Biosynthesis of starch and its synthesis. In: Press, J (ed) The Biochemistry of Plants, Vol. 14, Academic Press, San Diego, pp 181-254
  31. Preiss J (1999) Biosynthesis of bacterial and mammalian glycogen and plant starch synthesis and their regulation. In: Hecht SM (ed) Bioorganic Chemistry: carbohydrates, Oxford University Press, Oxford, pp 59-114
  32. Preiss J, Sivak MN (1998) Biochemistry, molecular biology and regulation of starch synthesis. Genet Eng 20:177-223
  33. Regierer B, Fernie A, Springer F, Perez-Melis A, Leisse A, Koehl K, Willmitze L, Geigenberger P, Kossmann J (2002) Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nature Biotechnol 20:1256-1260 https://doi.org/10.1038/nbt760
  34. Rodermel SR, Abbott MS, Bogorad L (1988) Nuclear-organelle interactions: nuclear antisense gene inhibition ribulose-1,5-bisphosphate carboxylase enzymes levels in transformed tobacco plants. Cell 55:673-681 https://doi.org/10.1016/0092-8674(88)90226-7
  35. Raines CA (2003) The calvin cycle revisited. Photosynth Res 75:1-10 https://doi.org/10.1023/A:1022421515027
  36. Sakulsingharoj C, Choi SB, Hwang SK, Edwards GE, Bork J, Meyer CR, Preiss J, Okita TW (2004) Engineering starch biosynthesis for increasing rice weight: the role of the cytoplasmic ADP-glucose pyrophosphorylase. Plant Science 167:1323-1333 https://doi.org/10.1016/j.plantsci.2004.06.028
  37. Sheehy JE, Mitchell PL, Hardy B eds (2008) "Charting new pathways to C4 rice" published by International Rice Research Institute
  38. Siegenthaler U, Sarmiento JL (1993) Atmospheric car4bon dioxide and the ocean. Nature 365:119-125 https://doi.org/10.1038/365119a0
  39. Slafer GA (ed.) 1994 Genetic improvement of field crops. University of Buenos Aires, Buenos Aires, Argentina. Marcel Dekker Inc. New York, USA
  40. Slattery CJ, Kavakli IH, Okita TW (2000) Engineering starch for increased quantity and quality. Trends Plant Sci 5:291-298 https://doi.org/10.1016/S1360-1385(00)01657-5
  41. Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci 99:1724-1729 https://doi.org/10.1073/pnas.022635299
  42. Spreitzer RJ, Salvucci ME Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu. Rev. Plant Biol. 53, 449-475 (2002) https://doi.org/10.1146/annurev.arplant.53.100301.135233
  43. Spreitzer RJ, Peddi SR, Satagopan S (2005) Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco. Proc. Natl Acad. Sci. USA 102, 17225-17230 https://doi.org/10.1073/pnas.0508042102
  44. Stitt M, Schulz ED, (1994) Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ 17:465-487 https://doi.org/10.1111/j.1365-3040.1994.tb00144.x
  45. Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM (1992) Role of ADP-glucose pyrophosphorylase in regulating starch levels in plant tissues. Science 258:287-292 https://doi.org/10.1126/science.258.5080.287
  46. Stitt M, Quick WP, Schurr U, Schulz ED, Rodermel SR, Bogorad L (1991) Decreased ribulose-1,5-bisphosphate carboxylase/oxygenase ijn transgenic tobacco transformed with antisense rbcS II. Flux control coefficients for photosynthesis in varing light, CO2 and air humidity. Planta 183:555-566
  47. Sweetlove LJ, Burrell MM, Rees T (1996) Starch metabolism in tubers of transgenic potato (Solanum tuberosum) with increased ADPglucose pyrophosphorylase. Biochem J 320:493-498 https://doi.org/10.1042/bj3200493
  48. Tiessen A, Hendriks J, Stitt M, Branscheid A, Gibon Y, Farre E, Geigenberger M (2002) Starch Synthesis in Potato Tubers Is Regulated by Post-Translational Redox Modification of ADP-Glucose Pyrophosphorylase. Plant Cell 14:2191-2213 https://doi.org/10.1105/tpc.003640
  49. Tjaden J, Mohlmann T, Kampfenkel K, Henrichs G, Neuhaus HE (1998) Altered plastidic ATP/ADP-transporter activity influences postato tuber morphology, yield and composition of tuber starch. Plant J 16:531-540 https://doi.org/10.1046/j.1365-313x.1998.00317.x
  50. Whitney S, Baldet P, Hudson GS, Andrews TJ (2001) Form I rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J 26:535-547 https://doi.org/10.1046/j.1365-313x.2001.01056.x
  51. Wang ZY, Chen XP, Wang JH, Liu TS, Liu Y, Wang GY (2007). Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Plant Cell Tissue and Organ Culture 88(1):83-92 https://doi.org/10.1007/s11240-006-9173-4
  52. Watanabe N, Evans JR, Chow WS (1994) Changes in the photosynthetic properties of Australian wheat cultivars over the last century. Aus J Plant Physiol 21:169-183 https://doi.org/10.1071/PP9940169
  53. Woodrow IE, Berry JA (1988) Enzymatic regulation of photosynthetic $CO_2$ fixation in C3 plants Ann Rev Plant Physiol Plant Mol Biol 39:533-594 https://doi.org/10.1146/annurev.pp.39.060188.002533
  54. Zhu X-G, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate; a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513-526 https://doi.org/10.1104/pp.107.103713
  55. Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Ann Rev Plant Biol 61:235-261 https://doi.org/10.1146/annurev-arplant-042809-112206