Effect of Trace Elements in Alcohol Beverages on the Type of Radiation-induced Cell Death

인체 임파구세포에서 X-선 조사에 의한 세포사의 형태에 주정성분이 미치는 영향

  • Sohn, Jong-Gi (Department of Radiation Oncology, Busan National University Hospital)
  • 손종기 (부산대학교병원 방사선종양학과)
  • Received : 2009.11.02
  • Accepted : 2010.04.19
  • Published : 2010.06.30

Abstract

Developments of radioprotective agents are important issues for minimizing the troubles and the effective treatments in radiotherapy. But few agents are useful in clinical and practical fields. It was shown that trace elements in alcohol beverages might have radioprotective effect. In this study, the types of cell death of lymphocytes according to the commercial alcohol beverage was investigated. Normal healthy volunteers ingested distilled water, beer or soju containing $81.5mg{\cdot}dl^{-1}$ ethyl ahcohol, respectively. After 2 hours, their blood were sampled with their consents. Fraction of lymphocytes was isolated by density gradient method with Histopaque-1077 (Sigma) and irradiated with dose from 0.5 to 5 Gy. After 60 hour incubation, the cells were harvested and analysed by flow cytometry. Cell viability was decreased by dose dependent manner. Cell viability of beer group was reduced about 15% compared with control group. Apoptosis in soju group was reduced about 20% compared with control group. Apoptosis of beer and control groups are similar. Necrosis of soju group significantly increased about 35% compared with control group. Early apoptosis of beer group was increased compared with control group. Early apoptosis of soju group was decreased about 25% compared with control group. Late apoptosis of beer and control group was increased by dose dependent manner. Late apoptosis of soju group was increased about 20-30% compared with control group. Late apoptosis of soju was increased and the radioprotective effect of soju was minimal because late apoptosis induced the cell necrosis. In case of soju trace elements, total cell apoptosis was decreased about 20% and early cell apoptosis was remarkably low. In this case, mitotic cells death may be dominant mechanism. Therefore, trace elements in soju may not be effective radioprotective agents.

방사선의 노출로 유발되는 장해위험을 극복하기 위한 방사선 방호제의 개발은 중요한 과제가 되고 있다. 또한 급속히 발전하고 있는 방사선 치료 분야에도 치료에 수반되는 부작용을 경감하는 약재의 활용은 효과적인 치료가 가능해진다. 그러나 항 방사선 방어제로 실용화 되어 있는 약재는 매우 적은 실정이다. 따라서 주류 속에 함유된 미량성분으로부터 세포를 보호하는 방사선 방호제로서 활용 가능성을 알아보기 위해 맥주와 그 미량 성분들을 대상으로 실험한 바 있고, 그 주류의 한 종류로서 시판되고 있는 소주의 주정성분에 대하여 세포사의 형태와 그 발현 빈도를 유세포분석기를 이용하여 분석하고자 하였다. 건강한 성인자원자 5명으로부터 동의를 얻어서 증류수와 맥주 그리고 소주에 각각 알코올 $81.5mg{\cdot}dl^{-1}$의 동일농도로 섭취하게 한 후에 2시간 경과 후 채혈하였고, 이로부터 임파구 세포를 분리하여 방사선을 0.5 Gy에서 5 Gy까지 조사한 다음 60시간 배양한 후에 유세포 분석기로 분석하였다. 전체 세포에 대한 세포 생존비율의 경우 방사선양이 증가할수록 세포 생존율은 점진적으로 감소하였다. 전세포고사의 비율은 소주 섭취군에서는 약 20%정도 대조군에 비해 감소된 것으로서 나타났다. 세포괴사의 비율은 소주 섭취군에서 선량이 증가할수록 약35%정도의 기울기로 증가하였다. 초기 세포고사비율은 맥주 섭취군이 대조군에 비해 약20% 발현율이 높게 나타났으나 소주섭취군의 경우, 전 선량 영역에서 약25%로 그 발현율이 저하되었다. 지연 세포고사 비율은 소주 섭취군에서는 대조군에 비하여 약20-30% 증가를 보였다. 특히 선량이 1.0 Gy에서 5.0 Gy사이의 영역에서 높은 발현율을 보였다. 방사선 방호제의 유용성 여부는 세포 보호효과가 얼마나 있느냐에 따라 달려있다. 맥주 섭취군의 대조군에 비해 약20% 발현율이 높게 나타났으나, 소주 주정성분의 경우 전체 세포 고사유발에서는 약20%의 감소와 조기 세포고사비율이 현저하게 낮은 것으로 미루어 보아 세포보호 효과는 미약하게 있으나 지연 세포고사의 높은 발현율은 세포괴사 비율을 증가 시켰다. 이러한 경우는 다른 세포사의 형태인 세포증식사가 더욱 중요하게 작용한 것으로 알 수 있다. 따라서 소주 주정성분의 경우는 방사선 방호물질로 효용성이 적은 것으로 사료된다.

Keywords

References

  1. Lett JT. Damage to DNA and chromatin, Structure from ionizing radiations and the radiation sensitivities of mammalian cells. Prog. Nucleic. Acid. Res. Mol. Biol. 1990;39:305-352.
  2. 손종기. 맥주의 방사선방어효과에 관한 연구. 대한방사선치료학회지 2007;19(2):83-90.
  3. Lavin MF, Schroeder AL. Damage-resistant DNA synthesis in eukaryotes. Mutation Research/DNA Repair Reports 1988;193(3):193-206. https://doi.org/10.1016/0167-8817(88)90030-2
  4. Ward JF. Biochemistry of DNA lesions. Radiation Research 1985;104:103-111. https://doi.org/10.2307/3576637
  5. Kerr. JFR, wyllie AH, currie AR apoptosis. A basic biological phenomenon with wide-ranging implication in tissue Kinetice. Br. J Cancer 1972; 26:239-455. https://doi.org/10.1038/bjc.1972.33
  6. Okada S. Radiation induced death. In: Altman KI, Gerber GB, Okada S, eds. Radiation biochemistry Volume I: Cells. New York; Academic Press, 1970:247-307.
  7. Joshi GP, Nelson WJ, Revell SH, shaw CA. X-ray induced chromosome damage in live mammalian cells, and improved measurement of its effects on their colony-forming ability. International Journal of Radiation Biology 1982;41(2):161-181. https://doi.org/10.1080/09553008214550171
  8. Kerr JF, Gobe G.C, Winterford CM, Harmon BV. Anatomical methods in cell death. Methods in cell biology 1995;46:1-27. https://doi.org/10.1016/S0091-679X(08)61921-4
  9. Potten CS. Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature 1997;269:518-521.
  10. Shridi F, Robok J. The influence of calcium channel blockers on superoxide anions. pharmacol. Res. commun. 1988;20(1):13-21.
  11. Kerr JFR, Winterford CM, Harmon BV. Apoptosis : Its signification cancer and therapy. Cancer 1994;73: 2013-2026. https://doi.org/10.1002/1097-0142(19940415)73:8<2013::AID-CNCR2820730802>3.0.CO;2-J
  12. Cregan SP, Boreham DR, Walker PR, Brown DL, Mitchel BEJ. Modification of radiation induced apoptosis in radiation or hyperthermia-adapted human l lymphocytes. Biochemistry and Cell Biology 1994;72: 475-482. https://doi.org/10.1139/o94-064
  13. Shinomiya N. New concepts in radiation-induced apoptosis : premitotic apoptosis and post mitotic apoptosis. Journal of Cellular and Molecular Medicine 2001;5(3):240-253. https://doi.org/10.1111/j.1582-4934.2001.tb00158.x
  14. Zamair L, Falcieri E, Zauli G, Catal A, Viatle M. Opimal detection of apoptosis by flow cytometry depends on cell morphology. Cytometry 1993; 14(8):891-897. https://doi.org/10.1002/cyto.990140807
  15. Stein L, Wang JM. Detecting apoptotic cells by flow cytometry using annexin V. Hot lines 1997;3: 12-13.
  16. Yarnold J. Molecular aspects of cellular responses to radiotherapy. Radiotherapy and Oncology 1997; 44(1):1-7. https://doi.org/10.1016/S0167-8140(97)00049-2
  17. Packham G, Porter CW, Cleveland JL. C-Myc induces apoptosis and cell ycle progression by separable, yet overlapping, pathways. Oncogene 1996;13(3):461-469.
  18. Halicka HD, Seiler K, FeidmanN EJ, Cell cycle specificity of apoptosis during treatment of leukaemias. Apoptosis 1997;2(1):25-39. https://doi.org/10.1023/A:1026431524236
  19. Barbert NC, Carr AM. Fission yeast wee protein Kinase is not required for DNA damage dependent mitotic arrest. Nature 1993;364:824-827. https://doi.org/10.1038/364824a0
  20. Dewey WC, Ling CE, Meyn RE. Radiation-induced apoptosis; Relevance to Radiotherapy. Internatioal Journal of Radiation Oncology, Biology and Physics 1995;33(4):781-796.
  21. Shinomiya N, Kuno Y, Yamamoto F, Fukasawa M, Okumura A, Uefuji M, Rokutanda M. Different mechanisms between premitotic apoptosis and postmitotic apoptosis in X-irradiated U937 cells. International Journal of Radiation Oncology, Biology and Physics 2000;47(3):767-777. https://doi.org/10.1016/S0360-3016(99)00517-9
  22. Bernhard EJ, Muschel RJ. Bakanauskas LJ, Mckenna WG. Reducing the radiation-induced G2 delay causes HeLa cells to undergo apoptosis instead of mitotic death. International Journal of Radiation Biology 1996;69(5):575-584. https://doi.org/10.1080/095530096145580