Alkaline Phosphatase Activity and Utilization of Dissolved Organic Phosphorus by Phytoplankton Isolated from Korean Coastal Waters

한국 연안역에서 분리한 식물플랑크톤의 alkaline phosphatase 활성과 용존태 유기인의 이용

  • Oh, Seok-Jin (Korea Inter-University Institute of Ocean Science, Pukyong National University) ;
  • Kwon, Hyeong-Kyu (Department of Oceanography, Pukyong National University) ;
  • Yang, Han-Soeb (Korea Inter-University Institute of Ocean Science, Pukyong National University)
  • 오석진 (부경대학교 해양과학공동연구소) ;
  • 권형규 (부경대학교 해양학과) ;
  • 양한섭 (부경대학교 해양과학공동연구소)
  • Received : 2009.12.15
  • Accepted : 2010.02.27
  • Published : 2010.02.28

Abstract

Utilization of dissolved organic phosphorus (DOP) and alkaline phosphatase (APase) activity by Skeletonema costatum, Chaetoceros didymus, Alexandrium tamarense and Heterosigma akashiwo under the phosphorus deficient condition were examined in the laboratory. S. costatum, C. didymus, A. tamarense and H. akashiwo could make use of phosphomonoester and nucleotide compounds for the growth of them as a phosphorus source. APase activity of S. costatum, C. didymus, A. tamarense and H. akashiwo began to be activated at dissolved inorganic phosphorus (DIP) concentrations less than $0.30\;{\mu}M$, $0.33\;{\mu}M$, $2.04\;{\mu}M$ and $0.63\;{\mu}M$ respectively, and their maximum APase activity were $0.01\;pmol\;cell^{-1}\;hr^{-1}$, $0.11\;pmol\;cell^{-1}\;hr^{-1}$, $1.63\;pmol\;cell^{-1}\;hr^{-1}$ and $0.19\;pmol\;cell^{-1}\;hr^{-1}$, respectively. Although each phytoplankton species displayed different APase activity for DOP utilization, their maximum APase activities were higher than maximum phosphorus uptake rates, inferring that these species might be able to keep growing under DIP-limited conditions thought utilizing effectively the hydrolized product of DOP. This result also implies that utilization of DOP might contribute to not only the growth of red tide forming phytoplankton but also the interspecific competition among phytoplankton species in coastal environments.

Skeletonema costatum, Chaetoceros didymus, Alexandrium tamarense 그리고 Heterosigma akashiwo의 인 제한에 따른 용존태 유기인(dissolved organic phosphorus; DOP)의 이용성과 alkaline phosphatase(APase)의 활성을 살펴보기 위해 실내실험을 실시하였다. S. costatum, C. didymus, A. tamarense 그리고 H. akashiwo는 인 공급원으로써 용존태 무기인 (dissolved inorganic phosphorus; DIP) 이외에 phosphomonoester와 nucleotide 화합물을 이용하여 성장을 유지할 수 있었다. S. costatum, C. didymus, A. tamarense 그리고 H. a/wshiwo의 APase 활성은 배양액내의 DIP가 각각 $0.30\;{\mu}M$, $0.33\;{\mu}M$, $2.04\;{\mu}M$$0.63\;{\mu}M$에서 최초로 활성을 보였으며, 최대활성은 각각 $0.01\;pmol\;cell^{-1}\;hr^{-1}$, $0.11\;pmol\;cell^{-1}\;hr^{-1}$, $1.63\;pmol\;cell^{-1}\;hr^{-1}$$0.19\;pmol\;cell^{-1}\;hr^{-1}$였다. APase 활성은 종에 따라 다르게 나타났지만, 최대 활성은 DIP의 흡수속도보다도 높아 인이 제한된 환경에서 효과적으로 DOP를 가수분해하여 성장을 유지 할 수 있을 것으로 보인다. 따라서 DOP의 이용능력은 적조 플링크튼의 성장뿐만 아니라 종간경쟁에도 기여할 것으로 생각된다.

Keywords

References

  1. 김광수, 2001. 목포항 수질오염과 부영양도의 계절변화. 한국해양환경공학회지, 4: 3-15.
  2. 이영식, 2004. 광양만에서 식물플랑크톤증식 제한영양염의 시.공간적 변동특성. 대한환경공학회지, 26: 890-895.
  3. 이원호, 심재형, 1995. 한국연안 산 규조 Skeletonema costatum의 조도에 대한 생태적 지위 성분의 종내 변위, 한국해양학회지, 35: 534-541.
  4. 이찬원, 권영택, 부민호, 권혁보, 양기섭, 2000. 남해연안 패류양식장의 부영앙화 특성. 한국해양환경공학회지, 3: 24-33.
  5. 조현서, 조천래, 강조해, 이규형, 2006. 2004-2005년 광양만의 해양수질 및 저질의 계절적 변동에 관한 연구. 해양환경안전학회 춘계학술발표대회 논문집, pp. 129-135.
  6. 해양수산부, 2005. 해양환경공정시험방법.
  7. Ammerman, J.W., 1991. Role of ecto-phosphohydrolases in phosphorus regeneration estuarine and coastal ecosystems. In: Microbial Enzymes in Aquatic Environments, edited by Chrost, R.J., Springer-Verlag, New York, pp. 165-186.
  8. Brand, L.E., R.R.L. Guillard and L.S. Murphy, 1981. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J. Plankton Res., 3: 193-201. https://doi.org/10.1093/plankt/3.2.193
  9. Beusekom, J.E.E. and D.H. Brockmann, 1998. Transformation of phosphorus in the Elbe estuary. Estuaries., 21: 518-526. https://doi.org/10.2307/1353291
  10. Cembella, A.D., N.J. Antia and P.J. Harrison, 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: Part 1. CRC Critic. Rev. Microbiol., 10: 317-391.
  11. Doblin, M.A., S.l. Blackburn and G.M. Hallegraeff, 1999. Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances. J. Exp. Mar. Biol. Ecol., 236: 33-47. https://doi.org/10.1016/S0022-0981(98)00193-2
  12. Droop, M.R., 1973. Some thoughts of nutrient limitation in algae. J. Phycol., 9: 264-272.
  13. Dyhrman, S.T. and B. Palenik, 1999. Phosphate stress in cultures and field populations of the dinoflagellate Prorocentrum minimum detected by a single-cell alkaline phosphatase assay. Appl. Environ. Microviol., 65: 3205-3212.
  14. Gallagher, J.C., 1982. Physiological variation and electrophoretic banding patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae). J. phycol., 18: 148-162. https://doi.org/10.1111/j.1529-8817.1982.tb03169.x
  15. Guillard, R.R.L. and D. Ryther, 1962. Studies of marine planktonic diatom I: Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol., 8: 229-239. https://doi.org/10.1139/m62-029
  16. Guillard, R.R.L. and P.E. Hargraves, 1993. Strichochrysis immobilise is a diatom, not a chrysophyte. phycologia, 32: 234-236. https://doi.org/10.2216/i0031-8884-32-3-234.1
  17. Hodson, R.E., A.E. Maccubbin and L.R. Pomeroy, 1981. Dissolved adenosine triphosphate utilization by free living and attached bacterioplankton. Mar. Biol., 64: 43-51. https://doi.org/10.1007/BF00394079
  18. Hernndez, I., F.X. Niell and J.A. Fernandez, 1994. Alkaline phosphatase activity in marine macrophytes: Histochemical localization in some widespread species in southern Spain. Mar. Biol., 120: 501-509. https://doi.org/10.1007/BF00350070
  19. Hirayama, K., T. Doma, N. Hamamura and T. Muramatsu, 1989. Role of alkaline phosphatase activity in the growth red tide organisms. In: Red Tides: Biology, Environmental Science and Toxicology, edited by Okaichi, T., D.M. Anderson and T. Nemoto, Elsevier, New York, pp. 317-320.
  20. Karl, D.M., 2000. Phosphorus the staff of life. Nature, 406: 31-33.
  21. Keller, M.D., R.C. Selvin, W. Claus and R.R.L. Guillard, 1987. Media for the culture of oceanic ultraphytoplankton. J. Phycol., 23: 633-638.
  22. Ketchum, B.H, N. Corwin and D.J. Keen, 1955. The significance of organic phosphorus determinations in ocean water. Deep-Sea Res., 2: 172-181. https://doi.org/10.1016/0146-6313(55)90022-8
  23. KIM, D.I., T. Matsubara, S.J. Oh, Y. Shimasaki, Y. Oshima and T. Honjo, 2007. Effects of nitrogen and phosphorus sources on the utilization and growth kinetics of the harmful dinoflagellate Cochlodinium polykrikoides isolated from Yatsushiro Sea, Japan. Nippon Suisan Gakkaishi., 73: 711-717. https://doi.org/10.2331/suisan.73.711
  24. Kobori, H. and N. Taga, 1979. Phosphatase activity and its role in the mineralization of organic phosphorus in coastal sea water. J. Exp. Mar. Bio. Ecol., 36: 23-39. https://doi.org/10.1016/0022-0981(79)90098-4
  25. Kuenzler, E.J. and J.P. Perras, 1965. Phosphatase of marine algae. Biol. Bull. Mar. Biol. Lab. Woods Hole., 128: 271-284. https://doi.org/10.2307/1539555
  26. Kuenzler, E.J., 1970. Dissolved organic phosphorus excretion by marine phytoplankton. J. Phycol., 6: 7-13.
  27. Lee, Y.W. and G.B. Kim, 2007. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea Korea using a Ra tracer. Estuar. Coast. Shelf Sci., 71: 309-317 https://doi.org/10.1016/j.ecss.2006.08.004
  28. Matsuda, A., T. Nishijima and K. Fukami, 1999. Effects of nitrogenous and phosphorus nutrients on the growth of toxic dinoflagellate Alexandrium catenella. Nippon Suisan Gakkaishi., 65: 847-855. https://doi.org/10.2331/suisan.65.847
  29. Monaghan, E.J. and K.C. Ruttenberg, 1999. Dissolved organic phosphorus in the coastal ocean: Reassessment of available methods and seasonal phosphorus profiles from the Eel River Shelf. Limnol. Oceanogr., 44: 1702-1714. https://doi.org/10.4319/lo.1999.44.7.1702
  30. Nausch, M., 1998. Alkaline phosphatase activities and the relationship to inorganic phosphate in the Pomeranian Bight (southern Baltic Sea). Aquat. Microb. Ecol., 16: 87-94. https://doi.org/10.3354/ame016087
  31. Nishijima, T., Y. Hata and S. Yamauchi, 1989. Physiological ecology of Prorocentrum triestinum. Bull. Jpn. Soc. Sci. Fish., 55: 2009-2014. https://doi.org/10.2331/suisan.55.2009
  32. Nishikawa, T. and Y. Hori, 2004a. Effects of nitrogen, phosphorus and silicon on a growth of a diatom Eucampia zodiacus caused bleaching of seaweed Porphyra isolated from Harima-Nada, Seto Inland Sea, Japan. Nippon Suisan Gakkaishi., 70: 31-38. https://doi.org/10.2331/suisan.70.31
  33. Nishikawa, T. and Y. Hori, 2004b. Effects of nitrogen, phosphorus and silicon on a growth of a diatom Coscinodiscus wailesii causing Porphyra bleaching isolated from Harima-Nada, Seto Inland Sea, Japan. Nippon Suisan Gakkaishi., 70: 872-878. https://doi.org/10.2331/suisan.70.872
  34. Oh, S.J., T. Yamamoto, Y. Kataoka, O. Matsuda, Y. Matsuyama and Y. Kotani, 2002. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). Fish. Sci., 68: 416-424. https://doi.org/10.1046/j.1444-2906.2002.00440.x
  35. Oh, S.J., Y. Matsuyama, T. Yamamoto, M. Nakajima, H. Takatsuzi, and K. Hujisawa, 2005. Recent developments and causes of harmful dinoflagellate blooms in the Seto Inland Sea-Ecological importance of dissolved organic phosphorus (DOP). Bull. Coast. Oceanogr., 43: 85-95.
  36. Pomeroy, L.R., H.M. Mathews and H.S. Min, 1963. Excretion of phosphate and soluble organic phosphorus compounds by zooplankton. Limnol. Oceanogr., 8: 50-55. https://doi.org/10.4319/lo.1963.8.1.0050
  37. Price, N. and F. Morel, 1990. Role of extracellular enzymatic reactions in natural waters. In: Aqatic Chemical Kinetics: Reaction Rates of processes in Natural Waters, edited by Stumm, W. Wiley-Interscience, New York, pp. 235-258.
  38. Provasoil, L., K. Shiraishi and J.R. Lance, 1959. Nutritional idio-syncrasies of Artemia and Tigriopus in monoxenic culture. Ann. N. Y. Sci., 77: 250-261.
  39. Shan, Y., I.D. Mckelvie and B.T. Hart, 1994. Determination of alkaline phosphatase-hydrolyzable phosphorus in nature water systems by enzymatic flow injection. Limnol. Oceanogr., 39: 1993-2000. https://doi.org/10.4319/lo.1994.39.8.1993
  40. Sharp, J.H., 1977. Excretion of organic matter by marine phytoplankton: Do healthy cells do it. Limnol Oceanorgr., 22: 381-399. https://doi.org/10.4319/lo.1977.22.3.0381
  41. Suzumura, M., K. Ishikawa, H. Ogawa, 1998. Characterization of dissolved organic phosphorus in coastal seawater using ultrafiltration and phosphohydrolytic enzymes. Linmol. oeanogr., 43: 1553-1564.
  42. Tarutani, K. and T. Yamamoto, 1994. Phosphate uptake and growth kinetics of Skeletonema costatum isolated from Hiroshima Bay. J. Fac. Appl. Biol. Sci., 33: 59-64.
  43. Yamaguchi, M. and S. ltakura, 1999. Nutrition and growth Kinetics in nitrogen- or phosphorus -limited cultures of the noxious red tide dinoflagellate Gymnodinium mikimotoi. Fish. Sci., 65: 367-373. https://doi.org/10.2331/fishsci.65.367
  44. Yamaguchi, M., S. Itakura and T. Uchida, 2001. Nutrition and growth kinetics in nitrogen- or phosphorus-limited cultures ofnovel red tidedinoflagellate Hepterocapsa circularisquama (Dinophyceae). Phycologia., 40: 313-318. https://doi.org/10.2216/i0031-8884-40-3-313.1
  45. Yamaguchi, H., T. Nishijima, H. Nishitani, K. Fukami and M. Adachi, 2004a. Organic phosphorus utilization and alkaline phosphatase production of 3 red tide phytoplankton. Nippon Suisan Gakkaishi., 70: 123-130. https://doi.org/10.2331/suisan.70.123
  46. Yamaguchi, H., T. Nishijima, A. Oda, K. Fukami, M. Adachi, 2004b. Distribution and variation of alkaline phosphatase activity and phsphatase hydrolyzable phosphorus in coatal seawater. Nippon Suisan Gakkaishi., 70: 333-342. https://doi.org/10.2331/suisan.70.333
  47. Yamaguchi, H., H. Sakou, K. Fukami, M. Adachi, M. Yamaguchi and N. Nishijima, 2005. Utilization of organic phosphorus and production of alkaline phosphatase by the phytoplankton, Hepterocapsa circularisquama, Fibrocapsa japonica and Chaetoceros ceratosporum. Plankton Biol. Ecol., 52: 65-75.
  48. Yamaguchi, H., S. Sakamoto and M. Yamaguchi, 2008. Nutrition and growth kinetics in nitrogen- and phosphorus-limited cultures of the novel red tide flagellate Chattonella ovata (Raphidophyceae). Harmful Algae., 7: 26-32. https://doi.org/10.1016/j.hal.2007.05.011
  49. Yamamoto, T., K. Tarutani, 1999. Growth and phosphate uptake kinetics of the toxic dinoflagellate Alexandrium tamarense from Hiroshima Bay in the Seta Inland Sea, Japan. Phycol. Res., 47: 27-32. https://doi.org/10.1111/j.1440-1835.1999.tb00280.x
  50. Wetzel, R.G., 1991. Extracelluar enzymeatic interaction: storage, redistribution and interspecific communication. In; Microbial Enzymes in Aquatic Environments, edited by Chrost, R.J., Springer-Verlag, New York, pp. 6-28.