DOI QR코드

DOI QR Code

CO2 Respiration Characteristics with Physicochemical Properties of Soils at the Coastal Ecosystem in Suncheon Bay

순천만 연안 생태계에서 토양의 이화학적 성질에 의한 이산화탄소 호흡 특성

  • Kang, Dong-Hwan (Geo-Sciences Institute, Pukyong National University) ;
  • Kwon, Byung-Hyuk (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Pil-Geun (Petroleum & Marine Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 강동환 (부경대학교 지구과학연구소) ;
  • 권병혁 (부경대학교 환경대기과학과) ;
  • 김필근 (한국지질자원연구원 석유해저연구본부)
  • Received : 2009.10.23
  • Accepted : 2009.12.11
  • Published : 2010.02.28

Abstract

This paper was studied $CO_2$ respiration rate with physicochemical properties of soils at wetland, paddy field and forest in Nongju-ri, Haeryong-myeon, Suncheon city, Jeollanam-do. Soil temperature and $CO_2$ respiration rate were measured at the field, and soil pH, moisture and soil organic carbon were analyzed in laboratory. Field monitoring was conducted at 6 points (W3, W7, W13, W17, W23, W27) for wetland, 3 points (P1, P2, P3) for paddy field and 3 points (F1, F2, F3) for forest in 10 January 2009. $CO_2$ concentrations in chamber were measured 352~382 ppm for wetland, 364~382 ppm for paddy field and 379~390 ppm for forest, and the average values were 370 ppm, 370 ppm and 385 ppm, respectively. $CO_2$ respiration rates of soils were measured $-73{\sim}44\;mg/m^2/hr$ for wetland, $-74{\sim}24\;mg/m^2/hr$ for paddy field and $-55{\sim}106\;mg/m^2/hr$ for forest, and the average values were $-8\;mg/m^2/hr$, $-25\;mg/m^2/hr$ and $38\;mg/m^2/hr$. $CO_2$ was uptake from air to soil in wetland and paddy field, but it was emission from soil to air in forest. $CO_2$ respiration rate function in uptake condition increased exponential and linear as soil temperature and soil organic carbon. But, it in emission condition decreased linear as soil temperature and soil organic carbon. $CO_2$ respiration rate function in wetland decreased linear as soil moisture, but its in paddy and forest increased linear as soil moisture. $CO_2$ respiration rate function in all sites increased linear as soil pH, and increasing rate at forest was highest.

Keywords

References

  1. 강동환, 김성수, 권병혁, 김일규, 2008, 고흥만 인공습지의 토양유기탄소와 이산화탄소 변동 관측, 수산해양교육학회지, 20(1), 58-67.
  2. 김광식, 김용웅, 이명철, 김현우, 1987, 농약이 토양 미생물상에 미치는 영향에 관한 연구: 1. 살균. 살충제가 토양 중의 미생물, 토양호흡 및 효소활동에 미치는 영향, 한국토양비료학회지, 20(4), 375-385.
  3. 김득수, 2007, 온실기체($CH_4,\;CO_2,\;N_2O$)의 하구언갯벌 배출량과 배출특성연구, 한국대기환경학회지, 23(2), 225-241. https://doi.org/10.5572/KOSAE.2007.23.2.225
  4. 노진규, 1979, 살충제 $\gamma$-BHC가 토양 세균수 및 토양호흡에 미치는 영향, 석사학위논문, 건국대학교.
  5. 성은희, 1976, 산림군락의 토양 호흡에 관한 연구, 석사학위논문, 춘천교대.
  6. 엄인권, 임동일, 이미경, 전수경, 정회수, 2003, 한국 동해안 영일만 표층 퇴적물의 금속 함량과 공간 변화 특성, 한국지구과학회지, 24(5), 477-490.
  7. 이미경, 배우근, 엄인권, 정회수, (2004) 영일만 해역 표층 퇴적물의 금속 분포 특성, 대한환경공학회지, 26(5), 543-551.
  8. 이희춘, 홍진규, 조천호, 최병철, 오성남, 김준, 2003, 한국 해남 농경지와 대기간의 에너지와 이산화탄소의 지표 교환, 한국농림기상학회지, 5(2), 61-69.
  9. 채남이, 김준, 김동길, 이도원, 김래현, 반지연, 손요한, 2003, 폐회로 역학 챔버 시스템을 이용한 토양 이산화 탄소 플럭스 관측, 한국농림기상학회지, 5(2), 94-100.
  10. 채남이, 김래현, 황태희, 서상욱, 이재석, 손요한, 이도원, 김준, 2005, 식물 환경 조절 시스템에서의 토양 호흡 관측 챔버법의 비교 실험, 한국농림기상학회지, 7(1), 107-114.
  11. 최태진, 김준, 임종환, 2003, 2002년 여름철 경사진 광릉 낙엽 활엽수림에서의 이산화탄소 교환, 한국농림기상학회지, 5(2), 70-80.
  12. Atkin, O. K., Edwards, E. J., Loveys, B. R., 2000, Response of root respiration to changes in temperature and its relevance to global warming, New Phytologist, 147, 141-154. https://doi.org/10.1046/j.1469-8137.2000.00683.x
  13. Bolin, B., 1983, The carbon cycle, The major biochemical cycles and their interactions, John Wiley & Sons, New York, 41-45.
  14. Boone, R. D., Nadelhoffer, K. J., Canary, J. D., Kaye, J. P., 1998, Roots exert a strong influence on the temperature sensitivity of soil respiration, Nature, 396, 570-572. https://doi.org/10.1038/25119
  15. Bowden, R. D., Nadelhoffer, K. J., Boone, R. D., Melillo, J. M., Garrison, J. B., 1993, Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest, Canadian Journal of Forest Research, 23, 1402-1407. https://doi.org/10.1139/x93-177
  16. Bowden, R. D., Newkirk, K. M., Rullo, G. M., 1998, Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions, Soil Biology and Biochemistry, 30, 1591-1597. https://doi.org/10.1016/S0038-0717(97)00228-9
  17. Dorr, H., Munnich, K. O., 1987, Annual variation in soil respiration in selected areas of the temperate zone, Tellus, 39B, 114-121. https://doi.org/10.1111/j.1600-0889.1987.tb00276.x
  18. Fang, C., Smith, P., Moncrieff, J. B., Smith, J. U., 2005, Similar response of labile and resistant soil organic matter pools to changes in temperature, Nature, 433, 57-59. https://doi.org/10.1038/nature03138
  19. Field, C. B., Ball, J. T., Berry, J. A., 1989, Photosynthesis, principles and filed techniques. In Plant physiological ecology, field methods and instrumentation (Pearcy, R. W., Ehleringer, J., Mooney, H. A., Rundel, P. W. eds.), Chapmand and Hall, New York, 209-253.
  20. Franzluebbers, A. J., Haney, R. L., Honeycutt, C. W., Arshad, M. A., Schomberg, H. H., Hons, F. M., 2001, Climatic influences on active fractions of soil organic matter, Soil Biology and Biochemistry, 33(7-9), 1103-1111. https://doi.org/10.1016/S0038-0717(01)00016-5
  21. Giardina, C. P., Ryan, M. G., 2000, Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature, Nature, 404, 858-861. https://doi.org/10.1038/35009076
  22. Glinski, J., Lipiec, J., 1990, Soil physical conditions and plant roots, CRC Press, Boca Raton, FL.
  23. Knorr, W., Prentice, I. C., House, J. I., Holland, E. A., 2005, Long-term sensitivity of soil carbon turnover to warming, Nature, 433, 298-301. https://doi.org/10.1038/nature03226
  24. Kowalenko, C. G., Ivarson, K. C., Cameron, D. R., 1978, Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils, Soil Biology and Biochemistry, 10, 417-423. https://doi.org/10.1016/0038-0717(78)90068-8
  25. Liski, J., Ilversniemi, H., Makela, A., Westman, C. J., 1999, $CO_2$ emissions from soil in response to climatic warming are overestimated: The decomposition of old soil organic matter is tolerant of temperature, Ambro, 28, 171-174.
  26. Liu, X., Wan, S., Su, B., Hui, d., Luo, Y., 2002, Response of soil $CO_2$ efflux to water manipulation in a tallgrass prairie ecosystem, Plant and Soil, 240, 213-223. https://doi.org/10.1023/A:1015744126533
  27. Lloyd, J., Taylor, J. A., 1994, On the temperature dependence of soil respiration, Functional Ecology, 8, 315-323. https://doi.org/10.2307/2389824
  28. Luo, Y., Zhou, X., 2006, Soil respiration and the environment, ELSEVIER, 305
  29. Maier, C. A., Kress, L. W., 2000, Soil $CO_2$ evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability, Canadian Journal of Forest Research, 30(3), 347-359. https://doi.org/10.1139/cjfr-30-3-347
  30. Mendham, D. S., O'Connell, A. M., Grove, T. S., 2002, Organic matter characteristics under native forest, long-term pasture, and recent conversion to Eucalyptus plantations in Western Australia: Microbial biomass, soil respiration, and permangante oxidation, Australian Journal of Soil Research, 40(5), 859-872. https://doi.org/10.1071/SR01092
  31. Palta, J. A., Nobel, P. S., 1989, Root respiration for Agave deserti: Influence of temperature, water status and age on daily patterns, Journal of Experimental Botany, 40, 181-186. https://doi.org/10.1093/jxb/40.2.181
  32. Papendick, R. I., Campbell, G. S., 1981, Theory and measurement of water potential, in Parr, J. F., Gardner, W. R., Elliott, L. F.(eds.), Water potential relations in soil microbiology, 1-22, Soil Science Society of America, Special Publication No. 9, Madison, WI.
  33. Post, W. M., Peng, T. H., Emanuel, W. R., King, A. W., Dale, V. H., DeAngelis, D. L., 1990, The global carbon cycle, Am. Scientist, 78, 310-326.
  34. Pregitzer, K. S., 2003, Woody plants, carbon allocation and fine roots, New Phytologist, 158, 421-423. https://doi.org/10.1046/j.1469-8137.2003.00766.x
  35. Pregitzer, K. S., King, J. S., Burton, A. J., Brown, S. E., 2000, Responses of tree fine roots to temperature, New Phytologist, 147, 105-115. https://doi.org/10.1046/j.1469-8137.2000.00689.x
  36. Schlesinger, W. H., 1986, Changes in soil carbon storage and associated properties with disturbance and recovery, The changing carbon cycle: A global analysis, Springer-Verlag, New York, 194-200.
  37. Sylvia, D. M., Fuhrimann, J., Hartel, P. G., Zuberer, D., 2005, Principles and applications of soil microbiology, 2nd Edition, Prentice Hall.
  38. Xu, L., Baldocchi, D. D., Tan, J., 2004, How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature, Global Biogeochemical Cycles, 18, GB4002, Doi: 10.1029/2004GB002281.
  39. Xu, L., Qi, Y., 2001, Soil-surface $CO_2$ efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California, Global Change Biology, 7, 667-677. https://doi.org/10.1046/j.1354-1013.2001.00435.x

Cited by

  1. Concentrations at Sunset before and after of Summer Season at the Foreshore vol.23, pp.3, 2014, https://doi.org/10.5322/JESI.2014.23.3.399
  2. Fluxes to Seasonal Variations in a Grassplot vol.23, pp.6, 2014, https://doi.org/10.5322/JESI.2014.23.6.1131