Electrical Conductivity Behavior of 6FDA-based Fluorinated Polyimide/PMMA-g-MWCNT Nanocomposite Film

6FDA를 포함한 불소계 폴리이미드와 PMMA가 그래프트된 카본나노튜브 나노복합필름의 전기 전도성 연구

  • Yun, Sung-Jin (School of Chemical Engineering & Materials Science, Chung-Ang University) ;
  • Im, Hyun-Gu (School of Chemical Engineering & Materials Science, Chung-Ang University) ;
  • Kim, Joo-Heon (School of Chemical Engineering & Materials Science, Chung-Ang University)
  • 윤성진 (중앙대학교 화학신소재공학부) ;
  • 임현구 (중앙대학교 화학신소재공학부) ;
  • 김주헌 (중앙대학교 화학신소재공학부)
  • Received : 2009.09.22
  • Accepted : 2009.11.22
  • Published : 2010.03.25

Abstract

PMMA was grafted on MWCNT surface in order to prepare conducting film composed of 6FDAbased polyimide/MWCNT. The electrical conductivity of 6FDA-based polyimide/PMMA-g-MWCNT was investigated as a function of PMMA-g-MWCNT content. Dispersion of MWCNT in 6FDA-based polyimide composite film was better than the pristine MWCNT due to the interaction force between PMMA and 6FDA-based polyimide. Electrical conductivity was interpreted by percolation threshold theory. As a result, 6FDA-6FpDA/PMMA-g-MWCNT which have high critical exponents and low critical concentration showed better dispersion than polyimide composite material that contains DABA(diamino benzoic acid).

6FDA를 포함한 다양한 폴리이미드/MWCNT의 전도성 복합 필름을 제조하기 위하여 MWCNT 표면에 PMMA를 도입하여 복합필름을 제조하였으며 전기 전도성의 변화를 PMMA-g-MWCNT의 농도 변화에 따라 관찰하였다. 6FDA계 폴리이미드계 복합 필름 내의 MWCNT 분산성은 PMMA-g-MWCNT의 경우 분자간의 상호 인력으로 인하여 분산도가 표면 처리하지 않은 MWCNT에 비하여 매우 높음을 확인하였다. 전기 전도도의 거동은 percolation threshold를 통하여 해석하였으며 그 결과 높은 임계 지수와 낮은 임계 농도를 가지는 6FDA-6FpDA/ PMMA-g-MWCNT 복합체가 DABA(diamino benzoic acid)를 포함한 폴리이미드 복합체에 비하여 높은 분산도를 가짐을 확인하였다.

Keywords

References

  1. A. Fujiwara, R. Iijima, H. Suematsu, H. Kataura, Y. Maniwa, and S. Suzuki, Physica B, 323, 227 (2002). https://doi.org/10.1016/S0921-4526(02)00970-5
  2. O. Lourie and H. D. Wagne, Compos. Sci. Tech., 59, 975 (1999). https://doi.org/10.1016/S0266-3538(98)00148-1
  3. R. B. Pipes and P. Hubert, Compos. Sci. Tech., 62, 419 (2002). https://doi.org/10.1016/S0266-3538(02)00002-7
  4. A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, Compo. Sci. Tech., 62, 1993 (2002). https://doi.org/10.1016/S0266-3538(02)00129-X
  5. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer, 40, 5967 (1999). https://doi.org/10.1016/S0032-3861(99)00166-4
  6. H. Bubert, S. Haiber, W. Brandl, G. Marginean, M. Heintze, and V. Bruser, Diamond Relat. Mater., 12, 811 (2003). https://doi.org/10.1016/S0925-9635(02)00353-9
  7. Y. H. Li, J. Wei, X. Zhang, C. Xu, D. Wu, L. Lu, and B. Wei, Chem. Phys. Lett., 365, 95 (2002). https://doi.org/10.1016/S0009-2614(02)01434-3
  8. C. Park, Z. Ounaies, and K. A. Watson, Chem. Pbys. Lett., 364, 303 (2002). https://doi.org/10.1016/S0009-2614(02)01326-X
  9. J. H. Jou and P. T. Huang, Polymer, 33, 1218 (1992). https://doi.org/10.1016/0032-3861(92)90766-P
  10. T. S. Chung and E. R. Kafchinski, Polymer, 37, 1635 (1996). https://doi.org/10.1016/0032-3861(96)83712-8
  11. M. Ree, T. J. Shin, S. I. Kim, S. H. Woo, and D. Y. Yoon, Polymer, 39, 2521 (1998). https://doi.org/10.1016/S0032-3861(97)00555-7
  12. M. Zuo and T. Takeichi, Polymer, 40, 5153 (1999). https://doi.org/10.1016/S0032-3861(98)00726-5
  13. H. B. Liu, C. D. Simone, P. S. Katiyar, and D. A. Scola, Int. J. Adh. Adh., 25, 219 (2005). https://doi.org/10.1016/j.ijadhadh.2004.07.004
  14. H. Im and J. Kim, Mater. Trans., 50, 7, 1730 (2009). https://doi.org/10.2320/matertrans.MF200916
  15. Q. Xue, Eur. Polym. J., 40, 323 (2004). https://doi.org/10.1016/j.eurpolymj.2003.10.011
  16. J. Wu and D. S. McLachlan, Phys. Rev. B, 56, 1236 (1997). https://doi.org/10.1103/PhysRevB.56.1236
  17. B. Weidenfeller, M. Hofer, and F. Schilling, Comp. Part A, 33, 1041 (2002). https://doi.org/10.1016/S1359-835X(02)00085-4
  18. D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London, 1992.
  19. E. P. Mamunya, V. V. Davidenko, and E. V. Lebedev, Polym. Comp., 16, 318 (1995).
  20. M. O. Lisunova, Y. P. Mamunya, N. I. Lebovka, and A. V. Melezhyk, Eur. Polym. J., 43, 3, 949 (2007). https://doi.org/10.1016/j.eurpolymj.2006.12.015
  21. W. Bauhofer and J. Z. Kovacs, Compo. Sci. Tech., 69, 1486 (2009). https://doi.org/10.1016/j.compscitech.2008.06.018
  22. Y. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, Eur. Polym. J., 38, 1887 (2002). https://doi.org/10.1016/S0014-3057(02)00064-2
  23. F. Lux, J. Mat. Sci., 28, 285 (1993). https://doi.org/10.1007/BF00357799
  24. J. H. Kim, W. J. Koros, and D. R. Paul, Polymer, 47, 3094 (2006). https://doi.org/10.1016/j.polymer.2006.02.083
  25. T. Ramanathan, H. Liu, and L. C. Brinson, J. Polym. Sci. Part B: Polym. Phys., 43, 2269 (2005). https://doi.org/10.1002/polb.20510
  26. Z. Ounaies, C. Park, K. E. Wise, E. J. Siochi, and J. S. Harrison, Compos. Sci. Tech., 63, 1637 (2003). https://doi.org/10.1016/S0266-3538(03)00067-8
  27. X. W. Jiang, Y. Z. Bin, and M. Matsuo, Polymer, 46, 7418 (2005). https://doi.org/10.1016/j.polymer.2005.05.127
  28. J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, Polymer, 44, 5893 (2003). https://doi.org/10.1016/S0032-3861(03)00539-1
  29. B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, and A. Drury, J. Appl. Phys., 92, 4024 (2002). https://doi.org/10.1063/1.1506397
  30. T. Wang, C.-H. Lei, A. B. Dalton, C. Creton, Y. Lin, K. A. S. Fernando, Y.-P. Sun, M. Manea, J. M. Asua, and J. L. Keddie, Adv. Mat., 18, 2730 (2006). https://doi.org/10.1002/adma.200601335
  31. H. H. Lee, K. S. Chou, and Z. W. Shih, Int. J. Adh. Adh., 25, 437 (2005). https://doi.org/10.1016/j.ijadhadh.2004.11.008