DOI QR코드

DOI QR Code

A Study on Optimal Earth-Moon Transfer Orbit Design Using Mixed Impulsive and Continuous Thrust

순간 및 연속 추력을 이용한 지구-달 최적 전이궤도 설계에 관한 연구

  • 노태수 (전북대학교 항공우주공학과) ;
  • 전경언 (전북대학교 항공우주공학과 대학원)
  • Received : 2010.04.12
  • Accepted : 2010.06.20
  • Published : 2010.07.01

Abstract

Based on the planar restricted three body problem formulation, optimized trajectories for the Earth-Moon transfer are obtained. Mixed impulsive and continuous thrust are assumed to be used, respectively, during the Earth departure and Earth-Moon transfer/Moon capture phases. The continuous, dynamic trajectory optimization problem is reformulated in the form of discrete optimization problem by using the method of direct transcription and collocation, and then is solved using the nonlinear programming software. Representative results show that the shape of optimized trajectory near the Earth departure and the Moon capture phases is dependent upon the relative weight between the impulsive and the continuous thrust.

본 논문에서는 지구-달 천이를 위한 최적 궤도 설계에 관한 연구를 수행하였다. 지구와 달의 인력을 동시에 고려한 평면상 제한 3체 궤도 운동 모델을 바탕으로 지구 출발시에는 순간 추력을, 지구-달 천이 과정 및 달 임무궤도 투입시에는 연속 추력을 사용하는 혼합형 궤도전이 방법을 제시하였다. 최적화 풀이 방법으로서 Direct Transcription 및 Collocation을 이용한 비선형 프로그래밍 기법을 적용하였으며, 지구 출발 및 달 임무궤도 투입 궤적의 형상은 순간 추력의 연속 추력에 대한 상대 가중치 및 비행시간에 의하여 매우 달라질 수 있음을 파악하였다.

Keywords

References

  1. 심은섭, “달 탐사위성 개발현황”, 항공우주산업기술동향, 제5권 1호, 2007, pp. 39-55.
  2. 주광혁, “달탐사기술”, 기계저널 제48권 제7 호, 2008, pp. 59-63.
  3. Pierson, Bion L. and Kluever, Craig A., "Three-Stage Approach to Optimal Low-Thrust Earth-Moon Trajectories", Journal of Guidance, Control, and Dynamics, Vol. 17, No. 6, 1994, pp. 1275-1282. https://doi.org/10.2514/3.21344
  4. Reddy, B.B.K., Kimiaghalam, B., and Homaifar, "Evolutionary Algorithms for Parameter Determination of Patched Conic Approximation", Aerospace Conference, 2005 IEEE, pp. 501-506. https://doi.org/10.1109/AERO.2005.1559340
  5. De Melo, C. F. and Winter, O. C., "Alternative Paths to Earth-Moon Transfer", Mathematical Problems in Engineering, Vol. 2006, Article ID 34317. 26, pp. 1-20. https://doi.org/10.1155/MPE/2006/34317
  6. Miele, A. and Mancuso, S., "Optimal Trajectories for Earth-Moon-Earth Flight", Acta Astronautica Vol. 49, No. 2, 2001, pp. 59-71. https://doi.org/10.1016/S0094-5765(01)00007-8
  7. Mingotti, G., Topputo, F., and Bernelli-Zazzera, F., "A Method to Design Sun-Perturbed Earth-to-Moon Low-Thrust Transfers with Ballistic Capture", XIX Congresso Nazionale AIDAA, 2007.
  8. Koon, W.S., Lo, M.W., Marsden, J.E. and Ross, S.D. "Low energy transfer to the moon", Celest. Mech. Dyn. Astron. 81:63-73. https://doi.org/10.1023/A:1013359120468
  9. F. Topputo, M. Vasile, and F. Bernelli-Zazzera, “Earth-to-Moon Low Energy Transfers Targeting L1 Hyperbolic Transit Orbits", Annals of Academic of Sciences, New York, vol. 1065, 2005, pp. 55-76. https://doi.org/10.1196/annals.1370.025
  10. Belbruno, Edward A. and Carrico, John P., "Calculation of Weak Stability boundary Ballistic Lunar Transfer Trajectories", AIAA/AAS Astrodynamics Specialist Conference, AIAA, 2000. Paper 2000–4142.
  11. Garcia, F. and Gomez, G., "A note on weak stability boundaries", Celest. Mech. Dyn. Astron. 97, 87-100 (2007). https://doi.org/10.1007/s10569-006-9053-6
  12. Belbruno, E. A. and Miller, J. K. "A Ballistic Lunar Capture Trajectory for Japanese Spacecraft Hiten", Jet Propulsion Lab., JPL IOM 312/90.4- 1731.
  13. 이동헌, 방효충, “저추력기를 이용한 연료 최적의 지구 탈출 궤적 설계 연구”, 한국항공우주학회지, 제35권 제7호, 2007, pp. 647-654. https://doi.org/10.5139/JKSAS.2007.35.7.647
  14. 송영주, 박상영, 최규홍, 심은섭, “등저추력과 가변 저추력을 이용한 지구-달 천이궤적 설계”, 한국항공우주학회지, 제37권 제9호, 2009, pp. 843-854. https://doi.org/10.5139/JKSAS.2009.37.9.843
  15. Ozimek, Martin T., "A Low-thrust transfer strategy to earth-moon collinear libration point orbits", M.S. Thesis, School of Aeronautics and Astronautics, Purdue University, 2006.
  16. James, J.D. Mireles, "Celestial Mechanics Notes Set 4: The Circular Restricted Three Body Problem", 2006
  17. Enright, Paul J. and Conway Bruce A. "Discrete Approximations to Optimal Trajectories Using Direct Transcription and Nonlinear Programming", Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 944-1002. https://doi.org/10.2514/3.20928
  18. Betts John T., "Very low-thrust trajectory optimization using a direct SQP method", Journal of computational and Applied Mathematics 120, 2000, pp. 27-40. https://doi.org/10.1016/S0377-0427(00)00301-0

Cited by

  1. Lunar CubeSat Impact Trajectory Characteristics as a Function of Its Release Conditions vol.2015, 2015, https://doi.org/10.1155/2015/681901
  2. Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture vol.31, pp.1, 2014, https://doi.org/10.5140/JASS.2014.31.1.51
  3. A Parametric Study on Optimal Earth-Moon Transfer Trajectory Design Using Mixed Impulsive and Continuous Thrust vol.39, pp.11, 2011, https://doi.org/10.5139/JKSAS.2011.39.11.1021
  4. Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust vol.28, pp.3, 2011, https://doi.org/10.5140/JASS.2011.28.3.203
  5. Ground Contact Analysis for Korea's Fictitious Lunar Orbiter Mission vol.30, pp.4, 2013, https://doi.org/10.5140/JASS.2013.30.4.255