DOI QR코드

DOI QR Code

Preparation of Screen Printable Conductive MoSi2 Thick Films for Ceramic Sheet Heater

Screen Printable MoSi2 도전성 Paste를 이용한 세라믹 면상 발열체 제조

  • Received : 2010.07.13
  • Accepted : 2010.07.20
  • Published : 2010.07.31

Abstract

Screen printable $MoSi_2$ paste and its ceramic sheet heater were investigated. $MoSi_2$ powder without $Mo_5Si_3$ second phase, which causes so-called pest phenomena, was synthesized by SHS technique. Over glaze was also developed for preventing pest phenomenon. The maximum temperature of $MoSi_2$ ceramic heater was over $500^{\circ}C$. After several heat up and cooling cycle, the $MoSi_2$ heater reveals pest phenomenon. Conductive $MoSi_2$ paste could be used in electronic ceramics, i.e., MLCC, LTCC, HTCC, and etc.

Keywords

References

  1. Y.-L. Jeng and E.J. Lavernia, “Review : Processing of Molybdenum Disilicide,” J. Mat. Sci., 29 2557-71 (1994). https://doi.org/10.1007/BF00356804
  2. J.H. Westbrook and D.L. Wood, ““PEST” Degradation in Beryllides, Silicides, Aluminides, and Related Compounds,” J. Nuclear Materials, 12 [2] 208-15 (1964). https://doi.org/10.1016/0022-3115(64)90142-4
  3. Y.Q. Liu, G. Shao, and P. Tsakiropoulos, “On the Oxidation Behaviour of $MoSi_2$,” Intermetallics, 9 125-36 (2001). https://doi.org/10.1016/S0966-9795(00)00114-X
  4. K. Hasson, M. Halvarsson, J. E. Tang, R. Pompe, M. Sundberg, and J.-E. Svensson, “Oxidation Behaviour of a $MoSi_2$-based Composite in Different Atmospheres in the Low Temperature Range (400-550${\circ}$C),” J. Euro. Ceram. Soc., 24 3559-73 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.11.024
  5. L. Shaw, R. Abbaschian, “Chemical State of the Molybdenum Disilicide($MoSi_2$) Surface,” J. Mat. Sci., 30 5272-80 (1995). https://doi.org/10.1007/BF00356081
  6. K. Kurokawa, H. Houzumi, I. Saeki, and H. Takahashi, “Low Temperature Oxidation of Fully Dense and Porous $MoSi_2$,” Mat. Sci. Eng., A261 292-99 (1999).
  7. P.J. Meschter, “Low-temperature Oxidation of Molybdenum Disilicide,” Metallung. Trans., 23A 1763-72 (1992).
  8. D.A. Bertiss, R.R. Cerchiara, E.A. Gulbransen, F.S. Petit, and G.H. Meier, “Oxidation of $MoSi_2$ and Comparison with other Silicide Materials,” Mater. Sci. Eng., A155 165-81 (1992).
  9. F. Zhang, L. Zhang, A. Shan, and J. Wu, “Oxidation of Stoichiometric Poly- and Single Crystalline $MoSi_2$ at 773K,” Intermetallics, 14 406-11 (2006). https://doi.org/10.1016/j.intermet.2005.08.001
  10. P. Feng, X. Wang, Y. He, and Y. Qiang, “Effect of High-temperature Preoxidation Treatment on the Low-temperature Oxidation Behavior of a MoSi2 based Composite at 500${\circ}$C,” J. Alloys and Compounds, 473 185-89 (2009). https://doi.org/10.1016/j.jallcom.2008.06.032
  11. C.L. Yeh and W.H. Chen, “Combustion Synthesis of $MoSi_{2}-Mo_{5}Si_{3}$ Composite,” J. Alloys and Compounds, 438 165-70 (2007). https://doi.org/10.1016/j.jallcom.2006.08.033
  12. S.-W. Jo, G.-W. Lee, J.-T. Moon, and Y.-S. Kim, “On the Formation of $MoSi_2$ by Self-propagating High-temperature Synthesis,” Acta Mater., 44 [11] 4317-26 (1996). https://doi.org/10.1016/1359-6454(96)00106-1
  13. I.-H. Song, J.-Y Yun, and H.-D. Kim, “Fabrication of Porous $MoSi_2$ Material for Heating Element Through Self-propagating High Temperature Synthesis Process (in Korean),” J. Kor. Ceram. Soc., 41 [1] 62-8 (2004). https://doi.org/10.4191/KCERS.2004.41.1.062
  14. I.-H. Song, D.-W. Kim, J.-Y Yun, and H.-D. Kim, “The Effects of Variation in Si Content on the Properties of Porous $MoSi_2$ Fabricated by Self-propagating High Temperature Synthesis Process(in Korean),” J. Kor. Ceram. Soc., 41 [7] 534-40 (2004). https://doi.org/10.4191/KCERS.2004.41.7.534

Cited by

  1. Inkjet Printing Technology Still in Progress vol.48, pp.6, 2011, https://doi.org/10.4191/kcers.2011.48.6.543