DOI QR코드

DOI QR Code

Initial Operating Condition of Membrane Bioreactor with PVDF Hollow Fiber and Permeate Reuse

PVDF 중공사막을 이용한 막생물반응기의 초기 운전조건 설정 및 여과수 재활용

  • Shin, Choon-Hwan (Department of Energy & Environmental Engineering, Dongseo University) ;
  • Kang, Dong-Hyo (Research Center, Busan Environmental Corporation) ;
  • Park, Hae-Sik (Research Center, Busan Environmental Corporation) ;
  • Cho, Hyun-Kil (Research Center, Busan Environmental Corporation)
  • 신춘환 (동서대학교 에너지환경공학과) ;
  • 강동효 (부산환경 공단 연구센터) ;
  • 박해식 (부산환경 공단 연구센터) ;
  • 조현길 (부산환경공단 연구센터)
  • Received : 2009.08.03
  • Accepted : 2009.10.07
  • Published : 2010.03.31

Abstract

In this paper, 4 bundle modules of PVDF hollow fiber membrane from Woori Tech company (Korea) were manufactured in a treatment capacity of 10 ton/day. A membrane bioreactor (MBR) pilot plant was installed at Sooyoung Wastewater Treatment Plant in Busan. An alternating aeration process was selected to avoid the concentration profile of suspended solid (SS) in the MBR. For stable operation, raw wastewater with mixed liquor suspended solid (MLSS) of about 1,000 ppm, which was in-flowed from the aeration tank of the wastewater treatment plant, was fed and filtered through the pilot plant. Subsequently the pilot plant were washed three times with washing water: once with ethanol solution, once with a solution of 5% NaOCl, and finally with washing water. After the chemical washing, the remaining water in the MBR was fed into the pilot plant. As a result, the SS removal efficiency was found to be more than 99.9%. The amount of filtrate with the aeration tank influent decreased by 16%, compared with that from the initial conditions, giving rise to 30% increase in the suction pressure. These results were used to set up continuous operation conditions. The results from the continuous operation with influent MLSS of 1,900 mg/L showed that the SS removal efficiency was about 99.99% and that the amount of filtrate and the suction pressure were $42{\sim}52L/m^2$ and 16~20 cmHg, respectively, indicating stable operation of the pilot plant. However, for the reuse of wastewater, methods need to be sought to avoid growth of algae which affects the SS removal efficiency at inlet and outlet of the permeate tank.

본 연구에서는 국내 우리텍사의 PVDF계 중공사 막을 4 bundle 씩 묶어 모듈을 제작하였으며, 처리용량은 10 ton/day로 설정하여 반응조 내 부유고형물(suspended solid; SS) 의 농도구배가 없도록 하부로부터 간헐 폭기하는 방식을 선택하여 부산 수영하수처리장에 pilot plant를 설치하였다. Pilot plant는 정상 운전을 위하여 하수처리장의 폭기조로부터 유입된 mixed liquor suspended solid (MLSS) 1,000 ppm 정도의 원수를 시험 여과하고, 세척수로 2회 세척, 10% 에탄올 용액으로 1회 세척, 그리고 NaOCl 5% 용액으로 1회 세척 과정을 거치고 마지막으로 세척수로 최종 세척한 후 운전하였다. 결과적으로, 화학세정 후 membrane bioreactor (MBR) 내의 잔류수를 원수로 운전한 결과 SS 제거효율이 99.9% 이상을 보이고 있는 결과와 폭기조 유입수를 원수로 운전하여, 여과 수량은 초기 조건에 비해 16% 감소, suction pressure 는 30% 상승하고 있음을 확인한 결과를 연속 운전 조건으로 설정하였다. 연속 운전한 결과, 유입수 mixed liquor suspended solid (MLSS)가 1,900 mg/L의 조건에서 SS 제거 효율은 99.99% 이었으며 여과수량은 $42{\sim}52L/m^2$ h, suction pressure가 16~20 cmHg로 안정 상태로 운전되고 있음을 확인하였다. 다만, 여과수 저장조의 유출구와 유입구에서의 SS 제거 효율에 영향을 미치는 조류의 발생 억제에 관한 방법이 재고되어 여과수의 재이용 범위를 설정할 필요가 있을 것으로 판단된다.

Keywords

References

  1. Kiat, W. Y., Yamamoto, K., and Ohgaki, S., "Optimal Fiber Spacing in Externally Pressurized Hollow Fiber Module for Solid-liquid Separation," Water Sci. Technol., 26, 1245-1254 (1992).
  2. Yamamoto, K., Hiasa, M., Mahmood, T., and Matsuo, T., "Direct Solid-liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank," Water Sci. Technol., 21, 43-54 (1989).
  3. Cote, P., Buisson, H., Pound, C., and Arakaki, G., "Immersed Membrane Activated Sludge for the Reuse of Municipal Wastewater," Desalination, 113, 189-196 (1997). https://doi.org/10.1016/S0011-9164(97)00128-8
  4. Ueda, T., Hata, K., Kikuoka, Y., and Seino, O., "Effects of Aeration on Suction Pressure in a Submerged Membrane Bioreactor," Water Res., 31, 489-494 (1997). https://doi.org/10.1016/S0043-1354(96)00292-8
  5. Smith, Jr., C. V., Gregorio, D. D., and Talsott, R. M., "The Use of Ultrafiltration Membrane for Activated Sludge Separation," Proc. of the 24th Annual Purdue Industrial Waste Conference, 241-250 (1969).
  6. Bemberis, I, Hubbard P. J., ando Leonard F. B., "Membrane Sewage Treatment System - Potential for Complete Wastewater Treatment," Proc. of the Winter Meeting American Society of Agricultural Engineers, 171-188 (1971).
  7. Yamoto, K., Kazuo, M., and Win, K. M., "Tannery Wastewater Treatment Using a Sequencing Batch Membrane Reactor," Water Sci. Technol., 163, 1639-1648 (1991).
  8. Shin, C. H., and Bae, J. S., "Modification of a Hollow Fiber Membrane and Its Three Dimensional Analysis of Surface Pores and Internal Structure for a Water Reclamation System," J. Ind. Eng. Chem., 15(6), 784-790 (2009). https://doi.org/10.1016/j.jiec.2009.05.001
  9. Shin, C. H,. and Johnson R. "Permeate Characteristics and Operating Conditions of a Membrane Bioreactor with Dispersing Modified Hollow Fiber," J. Ind. Eng. Chem., 13(1), 40-46 (2007).
  10. Kamo, J, Hirai, T., and Kamada, K., "Solvent-induced Morphological Change of Microporous Hollow Fiber Membrane," J. Membrane Sci., 70, 217-221 (1992). https://doi.org/10.1016/0376-7388(92)80107-U
  11. Barbe, A. M., Hogan, P. A., and Johnson, R., "Surface Morphology Changes during Initial Usage of Hydrophobic, Microporous Polypropylene Membranes," J. Membrane Sci., 172, 149-156 (2000). https://doi.org/10.1016/S0376-7388(00)00338-0
  12. Yamamori, H., Hoshlde, A., and Kobayashi, M., "Hollow Fiber Membrane Module," U.S. Patent No. 5,480,553 (1996).
  13. Nielson, D., The Effect of Rapid-backpulsing and Membrane Surface Modification on Membrane Fouling Reduction, Progress Report, Univ. of Colorado, 1999, pp. 1-11.
  14. Shin, C. H., "Optimization Technique and Practical Use of a MBR to Reduce the Size of Final Clarifier," Technical Report, Busan Environmental Installation Corporation, 2008.