DOI QR코드

DOI QR Code

Concept of Seasonality Analysis of Hydrologic Extreme Variables and Design Rainfall Estimation Using Nonstationary Frequency Analysis

극치수문자료의 계절성 분석 개념 및 비정상성 빈도해석을 이용한 확률강수량 해석

  • 이정주 (전북대학교 공과대학 토목공학과) ;
  • 권현한 (전북대학교 공과대학 토목공학과) ;
  • 황규남 (전북대학교 공과대학 토목공학과)
  • Received : 2010.03.07
  • Accepted : 2010.08.05
  • Published : 2010.08.31

Abstract

Seasonality of hydrologic extreme variable is a significant element from a water resources managemental point of view. It is closely related with various fields such as dam operation, flood control, irrigation water management, and so on. Hydrological frequency analysis conjunction with partial duration series rather than block maxima, offers benefits that include data expansion, analysis of seasonality and occurrence. In this study, nonstationary frequency analysis based on the Bayesian model has been suggested which effectively linked with advantage of POT (peaks over threshold) analysis that contains seasonality information. A selected threshold that the value of upper 98% among the 24 hours duration rainfall was applied to extract POT series at Seoul station, and goodness-fit-test of selected GEV distribution has been examined through graphical representation. Seasonal variation of location and scale parameter ($\mu$ and $\sigma$) of GEV distribution were represented by Fourier series, and the posterior distributions were estimated by Bayesian Markov Chain Monte Carlo simulation. The design rainfall estimated by GEV quantile function and derived posterior distribution for the Fourier coefficients, were illustrated with a wide range of return periods. The nonstationary frequency analysis considering seasonality can reasonably reproduce underlying extreme distribution and simultaneously provide a full annual cycle of the design rainfall as well.

수문자료의 계절성은 수자원관리의 관점에서 매우 중요한 요소로서 계절성의 변동은 댐의 운영, 홍수조절, 관개용수 관리 등 다양한 분야와 밀접한 관계를 가지고 있다. 수문빈도해석을 위해 POT 자료와 같은 부분기간치계열을 사용함으로써 자료의 확충, 계절성 확보, 발생빈도모형의 구축 등이 가능하다. 본 연구에서는 POT 자료의 장점을 효과적으로 빈도해석에 연계시키는 방법론으로서 POT 자료로부터 계절성을 추출하고 이를 빈도해석과 연계시켜 Bayesian 기법을 기반으로 하는 비정상성 빈도해석 모형을 구축하였다. 서울지점의 관측 자료로부터 98% Threshold를 적용하여 POT 자료를 추출하였으며, GEV 분포에 대한적합성을 검토하였다. 위치 및 규모매개변수의 계절적변동성을 Fourier 급수로 표현하고, Bayesian Markov Chain Monte Carlo 모의를 통해 매개변수들의 사후분포를 추정하였으며, 사후분포와 Quantile 함수를 이용하여 재현기간에 따른 확률강수량을 추정하였다. 계절성을 고려한 비정상성빈도해석 결과 7~8월의 비정상성 확률강수량과 기존 정상성빈도해석의 결과가 유사한 값을 나타내고 있으며 동시에 계절성을 반영한 확률강수량의 거동을 효과적으로 모의가 가능하였다.

Keywords

References

  1. 노재식, 이길춘 (1992). “하천 홍수량의 크기 및 빈도 결정.” 대한토목학회논문집, 대한토목학회, 제12권, 제2호, pp. 141-150.
  2. 노재식, 이길춘 (1993). “하천홍수량의 지역화 회귀모형 개발을 위한 지역빈도해석.” 대한토목학회논문집, 대한토목학회, 제13권, 제3호, pp. 139-154.
  3. 엄명진, 조원철, 허준행 (2008). “GPD 모형 산정을 위한 부분시계열 자료의 임계값 산정방법 비교.” 한국수자원학회논문집, 한국수자원학회, 제41권, 제5호, pp. 527-544.
  4. 유철상(2002). “강수의 계절성과 면적평균강수량의 추정오차”. 한국수자원학회논문집, 한국수자원학회, 제35권, 제5호, pp. 575-581.
  5. 유철상, 류소라, 김정환 (2002). “서울지점 월강수량 자료에 나타난 가뭄의 장기 재현특성.” 대한토목학회논문집, 대한토목학회, 제22권, 제3B호, pp. 281-289.
  6. 진영훈, 박성천, 이연길 (2005). “수문시계열의 장.단기성분 추출을 위한 웨이블렛 변환의 적용.” 대한토목학회논문집, 대한토목학회, 제25권, 제6B호, pp. 493-499.
  7. An, Y., and Pandey, M.D. (2005). “A comparison of methods of extreme wind speed estimation.” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 93, No. 7, pp. 535-545. https://doi.org/10.1016/j.jweia.2005.05.003
  8. Aryal, S.K., Bates, B.C., Campbell, E.P., Li, Y., Palmer, M.J., and Viney, N.R. (2009). “Characterizing and modeling temporal and spatial trends in rainfall extremes.” Journal of Hydrometeorology, Vol. 10, No. 1, pp. 241-253. https://doi.org/10.1175/2008JHM1007.1
  9. Beirlant, J., Joossens, E., and Segers, J. (2009). “Secondorder refined peaks over-threshold modelling for heavy-tailed distributions.” Journal of Statistical Planning and Inference, Vol. 139, No. 8, pp. 2800-2815. https://doi.org/10.1016/j.jspi.2009.01.006
  10. Clarke, R.T., de Paiva, R.D., and Uvo, C.B. (2009). “Comparison of methods for analysis of extremes when records are fragmented: A case study using Amazon basin rainfall data.” Journal of Hydrology, Vol. 368, No. 1-4, pp. 26-29. https://doi.org/10.1016/j.jhydrol.2009.01.025
  11. Cooley, D., Nychka, D., and Naveau, P. (2007). “Bayesian spatial modeling of extreme precipitation return levels.” Journal of American Statistical Association, Vol. 102, No. 479, pp. 824-840. https://doi.org/10.1198/016214506000000780
  12. Drees, H., and Kaufmann, E. (1998). “Selecting the optimal sample fraction in univariate extreme value estimation.” Stochastic Processes and Their Applications, Vol. 75, pp. 149-172. https://doi.org/10.1016/S0304-4149(98)00017-9
  13. George, E.I., and Mcculloch, R.E. (1993). “Variable Selection Via Gibbs Sampling.” Journal of American Statistical Association, Vol. 88(423), pp. 881-889. https://doi.org/10.2307/2290777
  14. Gomes, M.I., and Pestana, D. (2007). “A sturdy reducedbias extreme quantile (VaR) estimator.” Journal of American Statistical Association, Vol. 102, No. 477, pp. 280-292. https://doi.org/10.1198/016214506000000799
  15. Hall, P. (1990). “Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems.” Journal of Multivariate Analysis, Vol. 32, pp. 177-203. https://doi.org/10.1016/0047-259X(90)90080-2
  16. Hall, P., and Welsh, A.H. (1985). “Adaptive estimates of parameters of regular variation.” Annals of Statistics, Vol. 13, pp. 331-341. https://doi.org/10.1214/aos/1176346596
  17. Kwon, H.H., and Moon, Y.I. (2006). “Improvement of overtopping risk evaluations using probabilistic concepts for existing dams.” Stochastic Environmental Research And Risk Assessment, Vol. 20, No. 4, pp. 223-237. https://doi.org/10.1007/s00477-005-0017-2
  18. Madsen, H., Pearson, C.P., and Rosbjerg, D. (1997a). “Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events. 2. regional modeling.” Water Resources Research, Vol. 33, pp. 759-769. https://doi.org/10.1029/96WR03849
  19. Madsen, H., Rasmussen, P.F., and Rosbjerg, D. (1997b). “Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events. 1. at-site modeling.” Water Resources Research, Vol. 33, pp. 747-757. https://doi.org/10.1029/96WR03848
  20. Mendez, F.J., Menendez, M., Luceno, A., Medina, R., and Graham, N.E. (2008). “Seasonality and duration in extreme value distributions of significant wave height.” Ocean Engineering, Vol. 35, No. 1, pp. 131-138. https://doi.org/10.1016/j.oceaneng.2007.07.012
  21. Pujol, N., Neppel, L., and Sabatier, R. (2007). “Regional approach for trend detection in precipitation series of the French Mediterranean region.” Comptes Rendus Geoscience, Vol. 339, No. 10, pp. 651-658. https://doi.org/10.1016/j.crte.2007.08.010

Cited by

  1. Comparison Study on the Various Forms of Scale Parameter for the Nonstationary Gumbel Model vol.48, pp.5, 2015, https://doi.org/10.3741/JKWRA.2015.48.5.331
  2. Non-stationary Frequency Analysis for Extreme Precipitation based on Representative Concentration Pathways (RCP) Climate Change Scenarios vol.12, pp.2, 2012, https://doi.org/10.9798/KOSHAM.2012.12.2.231
  3. A Study on Optimal Time Distribution of Extreme Rainfall Using Minutely Rainfall Data: A Case Study of Seoul vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.275
  4. Estimates the Non-Stationary Probable Precipitation Using a Power Model vol.56, pp.4, 2014, https://doi.org/10.5389/KSAE.2014.56.4.029
  5. Application of a Non-stationary Frequency Analysis Method for Estimating Probable Precipitation in Korea vol.54, pp.5, 2012, https://doi.org/10.5389/KSAE.2012.54.5.141
  6. A Development of Regional Frequency Model Based on Hierarchical Bayesian Model vol.46, pp.1, 2013, https://doi.org/10.3741/JKWRA.2013.46.1.13
  7. Development of Stochastic Downscaling Method for Rainfall Data Using GCM vol.47, pp.9, 2014, https://doi.org/10.3741/JKWRA.2014.47.9.825
  8. A Study on the Changes of Return Period Considering Nonstationarity of Rainfall Data vol.47, pp.5, 2014, https://doi.org/10.3741/JKWRA.2014.47.5.447
  9. Bayesian Nonstationary Probability Rainfall Estimation using the Grid Method vol.48, pp.1, 2015, https://doi.org/10.3741/JKWRA.2015.48.1.37
  10. Estimates Extreme Hydrologic Event at Seoul Using Regression Analyses vol.12, pp.3, 2012, https://doi.org/10.9798/KOSHAM.2012.12.3.263