A Case Study for Simulation of a Debris Flow with DEBRIS-2D at Inje, Korea

DEBRIS-2D를 이용한 인제지역 토석류 산사태 거동모사 사례 연구

  • Chae, Byung-Gon (Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Liu, Ko-Fei (Dept. of Civil Engineering, National Taiwan University, Taiwan R.O.C.) ;
  • Kim, Man-Il (Office of Environmental Geology, Korea Rural Community and Agriculture Corporation)
  • 채병곤 (한국지질자원연구원 지구환경연구본부) ;
  • ;
  • 김만일 (한국농촌공사 환경지질처)
  • Received : 2010.06.01
  • Accepted : 2010.09.05
  • Published : 2010.09.30

Abstract

In order to assess applicability of debris flow simulation on natural terrain in Korea, this study introduced the DEBRIS-2D program which had been developed by Liu and Huang (2006). For simulation of large debris flows composed of fine and coarse materials, DEBRIS-2D was developed using the constitutive relation proposed by Julien and Lan (1991). Based on the theory of DEBRIS-2D, this study selected a valley where a large debris flow was occurred on July 16th, 2006 at Deoksanri, Inje county, Korea. The simulation results show that all mass were already flowed into the stream at 10 minutes after starting. In 10minutes, the debris flow reached the first geological turn and an open area, resulting in slow velocity and changing its flow direction. After that, debris flow started accelerating again and it reached the village after 40 minutes. The maximum velocity is rather low between 1 m/sec and 2 m/sec. This is the reason why debris flow took 50 minutes to reach the village. The depth change of debris flow shows enormous effect of the valley shape. The simulated result is very similar to what happened in the field. It means that DEBRIS-2D program can be applied to the geologic and topographic conditions in Korea without large modification of analysis algorithm. However, it is necessary to determine optimal reference values of Korean geologic and topographic properties for more reliable simulation of debris flows.

이 연구는 Liu and Huang (2006)이 개발한 DEBRIS-2D 프로그램을 이용하여 한국의 자연사면을 대상으로 토석류 거동모사의 적용성을 평가하기 위하여 수행하였다. 세립질 및 조립질 물질이 혼재한 대규모 토석류를 모사하기 위해 DEBRIS-2D는 Julien and Lan (1991)이 제안한 구성식을 이용하여 개발되었다. DEBRIS-2D의 이론을 바탕으로 이 연구는 2006년 7월 16일 강원도 인제군 덕산리에서 대규모 토석류 산사태가 발생한 계곡을 모사대상지역으로 선택하였다. 거동 모사 결과, 토사 물질은 산사태 발생 10분 후에 이미 계곡으로 모두 유입되었다. 10분 후 토석류는 계곡부의 첫 번째 변곡점 지점인 개활지에 이르렀으며, 이로 인해 토석류의 속도가 감소하고 흐름 방향이 변하였다. 그 후 토석류는 다시 가속도가 붙어 약 40분 후에 계곡 하류의 마을인근에 이르렀다. 토석류의 최대 속도는 1 m/sec에서 2 m/sec 정도로 비교적 느리고, 토석류의 깊이변화는 계곡의 형태에 많은 영향을 받음을 알 수 있다. 거동모사 결과는 산사태 발생당시 현장의 상황과 매우 유사하게 나타났다. 이는 DEBRIS-2D 프로그램이 알고리즘을 크게 수정하지 않고도 한국의 지질 및 지형조건에 어느 정도 적용 가능함을 의미한다. 그러나, 더욱 신뢰도 높은 토석류 거동모사를 위해서는 국내 지질 및 지형에 대한 최적의 속성값을 결정할 필요가 있다.

Keywords

References

  1. Coussot, P. and Proust, S., 1996, Slow, unconfined spreading of a mud flow, Journal of Geophysical Research, 101, 25217-25229. https://doi.org/10.1029/96JB02486
  2. Huang X., and Garcia, M.H., 1998, A Herschal-Hulkley model for mud flow down a slope., Journal of Fluid Mechanics, 374, 305-333. https://doi.org/10.1017/S0022112098002845
  3. Iverson, R.M., Denlinger, R.P., LaHusen, R.G., and Logan, M., 2000, Two-phase debris flow across 3-D terrain: Model predictions and experimental tests, in Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment G.F. Wieczorek and N.D. Naeser, eds., Balkema, Rotterdam, 521-529.
  4. Johnson, A.M., 1970, Physical processes in geology. New York, 577p.
  5. Julien, P.Y. and Lan, Y., 1991, Rheology of hyperconcentrations, Journal of Hydr. Engrg., ASCE, 117, 346-353. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:3(346)
  6. KIGAM, 2008, Development of landslide prediction technology and damage mitigation countermeasures, NEMA, NEMA-06-NH-04, 566p.
  7. Liu, K.F. and Huang, M.C., 2006, Numerical simulation of debris flow with application on hazard area mapping, Computational Geosciences, 10, 221-240. https://doi.org/10.1007/s10596-005-9020-4
  8. Liu, K.F. and Huang, M.C., 2009, Numerical Simulation of Debris Flows, Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2009), May 31 - June 5, 2009, Honolulu, Hawaii, USA, OMAE2009-79197.
  9. Liu, K.F. and Huang, M.T., 1996, Study of the front shape of 3-D stationary debris flow, Proceedings of Eight Civil and Hydraulic conference, 529-536.
  10. Liu, K.F. and Huang, M.T., 2003, Three-dimensional numerical simulation of debris flows and its applications, The 3rd international conference on debrisflow hazards mitigation, 469-481.
  11. Liu. K.F. and Mei, C.C., 1989, Slow spreading of a sheet of Bingham flulid on an inclined plane, Journal of Fluid Mechanics, 209, 505-529.
  12. Mei, C.C. and Yuhi, M., 2001, Slow flow of a Bingham fluid in a shallow channel of finite width, Journal of Fluid Mechanics, 431, 135-159. https://doi.org/10.1017/S0022112000003013
  13. Ng, C. and Mei, C.C., 1994, Roll waves on a shallow layer of mud modeled as a power-law fluid, Journal of Fluid Mechanics, 263, 151-183. https://doi.org/10.1017/S0022112094004064
  14. O'Brien, J.S. and Julien, P.Y., 1997, On the importance of mudflow routing, Proceedings of the 2nd International Conference on Debris Flow Hazards Mitigation, Taipei, 677-686.
  15. Tasi, Y.F., 1999, Study on the configuration of debris flow fan, Ph.D. dissertation, National Cheng-Kung University, Taiwan, 255p.