Construction and Application of an Automated Apparatus for Calculating the Soil-Water Characteristic Curve

자동 흙-함수특성곡선 시험장치 구축 및 활용

  • Song, Young-Suk (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Nam-Woo (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Hwang, Woong-Ki (Department of Civil Engineering, Korea Maritime University) ;
  • Kim, Tae-Hyung (Department of Civil Engineering, Korea Maritime University)
  • 송영석 (한국지질자원연구원 지구환경연구본부) ;
  • 이남우 (한국지질자원연구원 지구환경연구본부) ;
  • 황웅기 (한국해양대학교 토목공학과) ;
  • 김태형 (한국해양대학교 토목공학과)
  • Received : 2010.07.15
  • Accepted : 2010.08.29
  • Published : 2010.09.30

Abstract

A new, automated apparatus is proposed for calculating the Soil-Water Characteristic Curve (SWCC), representing a simple and easily applied testing device for continuous measurements of the volumetric water content and suction of unsaturated soils. The use of this apparatus helps to avoid the errors that arise when performing experiments. Consequently, the apparatus provides greater accuracy in calculating the SWCC of unsaturated soils. The apparatus is composed of a pressure panel, flow cell, water reservoir, air bubble trap, balance, sample-preparation accessories, and measurement system, among other components. The air pressure can attain 300 kPa, and a general test can be completed in a short time. The apparatus can simply control the drying process and wetting process. The changes in volumetric water content that occur during the drying and wetting processes are shown directly in the SWRC program, in real time. As a case study, we performed an SWCC test of Joomunjin sand (75% relative density) to measure matric suction and volumetric water content during both the drying and wetting processes. The test revealed hysteresis behavior, whereby the water content on the wetting curve is always lower than that on the drying curve for a specific matric suction, during the wetting and drying processes. Based on the test results, SWCCs were estimated using the Brooks and Corey, van Genuchten, and Fredlund and Xing models. The van Genuchten model performed best for the given soil conditions, as it yielded the highest coefficient of determination.

새롭게 구축된 자동 흙-함수특성곡선 시험장치는 측정원리가 간단하고 연속적인 측정이 가능하며, 시험자에 의해 발생될 수 있는 오차를 최소화하여 보다 정확한 불포화토의 흙-함수특성곡선을 산정할 수 있다. 본 시험장치는 압력조절장치, 플로우셀, 물저장소, 공기방울트랩, 저울, 시료준비장치, 측정시스템 등으로 구성되어 있다. 공기의 압력은 0-300 kPa범위까지 적용할 수 있으며, 단기간내 시험을 완료할 수 있다. 본 시험장치에서는 건조과정과 습윤과정을 재현할 수 있으며, 측정 자동화 프로그램(SWRC)을 이용하여 건조과정과 습윤과정에 따른 시료내 함수비 변화를 실시간으로 확인할 수 있다. 본 시험기를 이용하여 상대밀도 75%인 주문진 표준사에 대한 건조 및 습윤과정의 체적함수비에 따른 모관흡수력을 측정하였다. 측정결과, 건조 및 습윤과정을 거치는 동안 동일한 체적함수비에서 대한 모관흡수력 값이 다르게 나타나는 이력현상(hysteresis)이 발생하였다. 측정된 결과를 토대로 기존의 Brooks and Corey, van Genuchten 및 Fredlund and Xing 방법을 이용하여 흙-함수특성곡선을 예측하였다. 결정계수를 이용하여 이들 방법에 대한 정확성을 평가한 결과 대상토질조건의 경우 van Genuchten방법이 신뢰성이 가장 높은 것으로 나타났다.

Keywords

References

  1. 김상규, 류지협, 송진규, 1996, 불포화토의 함수특성 측정, 한국지반공학회논문집, 12(6), 139-151.
  2. 조성은, 이승래, 2001, 불포화 토사사면의 얕은 파괴 해석에 대한 비교 연구, 한국지반공학회논문집, 17(4), 135-143.
  3. 황창수, 김태형, 2003, 피스톤펌프장치를 이용한 흙-수분특성곡선 측정방법, 한국지반공학회논문집, 19(5), 155-162.
  4. Arya, L. M. and Paris, J. F., 1981, A Physicoempirical Model to Predict the Soil Moisture Characteristic from Particle-size Distribution and Bulk Density Data, Soil Society of America Journal, 45, 1023-1030. https://doi.org/10.2136/sssaj1981.03615995004500060004x
  5. Barbour, S. L., 1998, 19th Canabian Geotechnical Colloquium : The Soil-water characteristic curve : a historical perspective, Canadian Geotechnical Journal, 35, 873-894. https://doi.org/10.1139/t98-040
  6. Bolt, G. H. and Miller, R. D., 1958, Calculation of total and component potentials of water in soil", Trans. Am. Geophys. Union, 39, 917-928. https://doi.org/10.1029/TR039i005p00917
  7. Brooks, R. H. and Corey, A. T., 1964, Hydraulic properties of porous media, Colorado State University (Fort Collins), Hydrology Paper, No. 3, March. pp.27.
  8. Buckingham, E., 1907, Studies on the movement of soil moisture, U.S. Dept. of Agr. Bur. Soils Bull. 38.
  9. Burdine, N. T., 1953, Relative Permeability Calculation from Pore Size Distribution Data, Petroleum Trans. AIME, 198, 71-77.
  10. Childs, E. C. and Collis-George, N., 1948, Interaction of water and porous materials, Soil Geometry and soil-water equilibria. Discussions paraday Soc. N3, 78-85.
  11. Croney, D. and Coleman, J. D., 1961, Pore pressure and suction in soils, Proceedings of, Conference on Pore Pressure and Suction in Soils, Butterworths, London, 31-37.
  12. Edlefsen. N. E. and Anderson, A. B. C., 1943, Thermodynamics of soil moisture, Hilgadia, 15p.
  13. Fredlund, D. G. and Rahardjo, H., 1993, Soil Mechanics for Unsaturated Soils, John Wiley and Sons. 544p.
  14. Fredlund, D. G. and Xing, A., 1994, Equations for the soil-water characteristic curve, Canadian Geotechnical Journal, 31(3), 521-532. https://doi.org/10.1139/t94-061
  15. Fredlund, M. D., Fredlund, D. G. and Wilson, G. W., 1997, Estimation of Unsaturated Soil Properties Using A Knowledge Based System, ASCE Fourth Congress on Computing in Civil Engineering Philadelphia, Pennsylvania, 16-18.
  16. Gardner, W. R., 1956, Mathematics of Isothermal Water Conduction in Unsaturated Soils, Highway Research Board Special Report, 40th International Symposium on Physico-Chemical Phenomenon in soils, Washington D.C., 78-87.
  17. Godt, J.W., Baum, R.L. and Lu, N., 2009, Landsliding in partially saturated materials, Geophysical Research Letters, 36, L02403. https://doi.org/10.1029/2008GL035996
  18. Mualem, Y., 1976, A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media, Water Resource Research, 12(3), 513-522. https://doi.org/10.1029/WR012i003p00513
  19. Mualem, Y., 1979, Theory of universal hysterical properties of unsaturated porous media, Surface and subsurface hydrology. Proc. Fort Collins 3rd international hydrology symposium, 387-399.
  20. Lu, N. and Likos, W. J., 2004, Unsaturated Soil Mechanics, John Wiley and Sons Inc, 3-44.
  21. Scheinost, A. C., Sinowski, W. and Auerswald, K., 1997, Regionalization of Soil Water Retention Curves in a Highly Variable Soilscape, I", Developing a new pedotransfer function, Geoderma, 78, 129-143. https://doi.org/10.1016/S0016-7061(97)00046-3
  22. van Genuchten, M. T., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, 44, 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  23. Vereecken, H., Maes, J., Feyen, J. and Darius, P., 1989, Estimating the Soil Moisture Retention Characteristic from Texture, Bulk Density, and Carbon Content, Journal of Soil Science, 148(6), 389-403. https://doi.org/10.1097/00010694-198912000-00001