Effect of Poria Cocos on the Scopolamine-induced Memory Impairment and Its Underlying Molecular Mechanism

스코폴라민으로 유도된 기억력 손상에 대한 복신의 보호 효과 및 작용기전 연구

  • JeGal, Kyoung-Hwan (Department of Pathology, College of Oriental Medicine, Daegu Haany University) ;
  • Park, Sung-Jun (Department of Pathology, College of Oriental Medicine, Daegu Haany University) ;
  • Kim, Chang-Yul (Department of Pathology, College of Oriental Medicine, Daegu Haany University) ;
  • Lee, Chan (Department of Pathology, College of Oriental Medicine, Daegu Haany University) ;
  • Park, Jong-Hyun (Department of Pathology, College of Oriental Medicine, Daegu Haany University) ;
  • Jang, Jung-Hee (Department of Pathology, College of Oriental Medicine, Daegu Haany University)
  • 제갈경환 (대구한의대학교 한의과대학 병리학교실) ;
  • 박성준 (대구한의대학교 한의과대학 병리학교실) ;
  • 김창열 (대구한의대학교 한의과대학 병리학교실) ;
  • 이찬 (대구한의대학교 한의과대학 병리학교실) ;
  • 박종현 (대구한의대학교 한의과대학 병리학교실) ;
  • 장정희 (대구한의대학교 한의과대학 병리학교실)
  • Received : 2010.03.06
  • Accepted : 2010.04.08
  • Published : 2010.04.25

Abstract

This study was performed to investigate the memory enhancing effect of Poria cocos Wolf (Hoelen cum radix) against scopolamine-induced amnesia in Sprague-Dawley (SD) rats. To induce amnesia, scopolamine (0.75 mg/kg) was intraperitonically injected into SD rats 30 min before starting behavior tests. We have conducted Morris water-maze and Y-maze tests to monitor learning and memory functions. Poria cocos effectively reversed scopolamine-induced memory impairment in SD rats which was represented by an improvement of mean escape latency in water-maze test and spontaneous alterations in Y-maze test. To elucidate possible molecule mechanism, we have measured mRNA as well as protein expression of acetylcholine esterase (AchE), choline acetyltransferase (ChAT), muscarinic acetylcholine receptor (mAchR), and brain-derived neurotrophic factor (BDNF) using RT-PCR and Western blot analysis, respectively. Poria cocos increased mRNA levels of ChAT and mAchR in rat hippocampus compared with those in the scopolamine-injected amnesic group. In addition, protein expression of ChAT and BDNF was also elevated by Poria cocos intake. Furthermore, as an upstrem regulator, the activation of cAMP response element-binding protein (CREB) was assessed by immunohistochemistry. In this immunohistochemical analysis, the phosphorylation of CREB (p-CREB) was reduced by scopolamine injection, which was restored back to control levels by administration of Poria cocos. These results suggest that Poria cocos may improve memory and cognitive deficit in amnesia and have therapeutic potentials through up-regulation of ChAT, mAchR, and BDNF, which seemed to be mediated by activation of CREB.

Keywords

References

  1. Kumar, V., Abbas, A.K., Fausto, N. Robbins and Cotran Pathologic Basis of Disease. San Diego, U.S.A., Elsevier Saunders. pp 1386-1388, 2004.
  2. 이광우. 신경과학. 서울, 범문사, pp 369-370, 2005.
  3. 대한정신의학회. 신경정신의학. 서울, 중앙문화사, pp. 507-509, 2007.
  4. Talesa, V.N. Acetylcholinesterase in Alzheimer's disease. Mech Ageing Dev. 122(16):1961-1969, 2001. https://doi.org/10.1016/S0047-6374(01)00309-8
  5. Kasa, P., Rakonczay, Z., Gulya, K. The cholinergic system in Alzheimer's disease. Prog Nuurobiol. 52(6):511-535, 1997. https://doi.org/10.1016/S0301-0082(97)00028-2
  6. Pakaski, M., Kalman, J. Interactions between the amyloid and cholinergic mechanisms in Alzheimer's disease. Neurochem Int. 53(5):103-111, 2008. https://doi.org/10.1016/j.neuint.2008.06.005
  7. 전국한의과대학 본초학공동교재 편저위원회. 본초학. 서울, 영림사, pp 345-346, 2007.
  8. 김영욱, 송태원, 오민석. 총명탕이 건망유도백서의 학습과 기 억에 미치는 영향. 한방재활의학과학회지 8(2):464-479, 1998.
  9. 오영진, 김보경. 총명탕과 향부자총명탕의 추출물, 나노분말 제형을 이용한 치매에 관한 연구. 동의신경정신과학회지 17(1):79-105, 2006.
  10. 이승희, 이상룡, 정인철. 귀비총명탕 열수추출물과 초미세분말제형이 Alzheimer's Disease 병태 모델에 미치는 영향. 동의생리병리학회지 21(4):921-933, 2007.
  11. 하수영, 이상룡, 정인철. 총명탕과 산사총명탕이 Alzheimer's Disease 병태 모델에 미치는 영향. 동의신경정신과학회지 17(1):59-78, 2006.
  12. 박지운, 이상룡, 정인철. 총명탕과 목근피총명탕이 CT105와 $\betaA$로 유도된 Alzheimer's disease 병태 모델에 미치는 영향. 동의신경정신과학회지 17(1):37-57, 2006.
  13. 국윤재, 최 혁, 김태헌, 강형원, 유영수. 베타아밀로이드 유도성 Neuro 2A 세포독성에 대한 총명탕의 효과. 동의생리병리학회지 18(5):1418-1425, 2004.
  14. 김경윤, 이상영, 차대연, 이석진, 김계엽, 김행중, 정현우. 허혈성 뇌손상 백서에서 가감총명탕이 인지기능에 미치는 효과. 동의생리병리학회지 22(3):556-561, 2008.
  15. 안기영, 이성균, 이승희, 이재원, 신진봉, 송봉근, 이언정. 허혈유발 흰쥐에 있어서의 인지장애에 미치는 가감총명탕의 효과. 대한한의학회지 28(2):1-12, 2007.
  16. Morris, R.G. Development of a water maze procedure for studying spatial learning in the rat. J Neurosci Methods. 11(1):47-60, 1984. https://doi.org/10.1016/0165-0270(84)90007-4
  17. Olton, D.S., Papas, B.C. Spatial memory and hippocampal function. Neuropsychologia. 17(6):669-682, 1979. https://doi.org/10.1016/0028-3932(79)90042-3
  18. Oh, M.H., Houghton, P.J., Whang, W.K., Cho, J.H. Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine. 11(6):544-548, 2004. https://doi.org/10.1016/j.phymed.2004.03.001
  19. Blokland, A. Scopolamine-induced deficits in cognitive performance: A review of animal studies. Scopolamine Rev. pp 1-76, 2005.
  20. Messer, W.S.Jr., Bohnett, M., Stibbe, J. Evidence for a preferential involvement of M1 muscarinic receptors in representational memory. Neurosci Lett. 116(1-2):184-189, 1990. https://doi.org/10.1016/0304-3940(90)90407-Z
  21. Anagnostaras, S.G., Murphy, G.G., Hamilton, S.E., Mitchell, S.L., Rahnama, N.P., Nathanson, N.M., Silva, A.J. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci. 6(1):51-58, 2003. https://doi.org/10.1038/nn992
  22. Seeger, T., Fedorova, I., Zheng. F., Miyakawa. T., Koustova. E., Gomeza. J., Basile. A.S., Alzheimer, C., Wess, J. M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci. 24(45):10117-10127, 2004. https://doi.org/10.1523/JNEUROSCI.3581-04.2004
  23. Chen, W., An, W., Chu, J. Effect of water extract of Poria on cytosolic free calcium concentration in brain nerve cells of neonatal rats. Zhongguo Zhong Xi Yi Jie He Za Zhi. 18(5):293-295, 1998.
  24. Murray, K.D., Gall, C.M., Jones, E.G., Isackson, P.J. Differential regulation of brain-derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase messenger RNA expression in Alzheimer's disease. Neuroscience. 60(1):37-48, 1994. https://doi.org/10.1016/0306-4522(94)90202-X
  25. Alderson, R.F., Alterman, A.L., Barde, Y.A., Lindsay, R.M. Brain-derived neurotrophic factor increses survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron. 5(3):297-306, 1990. https://doi.org/10.1016/0896-6273(90)90166-D
  26. McAllister, A.K., Katz, L.C., Lo, D.C. Neurotrophins and synaptic plasticity. Annu Rev Neurosci. 22: 295-318, 1999. https://doi.org/10.1146/annurev.neuro.22.1.295
  27. Martin, K.C., Barad, M., Kandel, E.R. Local protein synthesis and its role in synapse-specific plasticity. Curr Opin Neurobiol. 10(5):587-592, 2000. https://doi.org/10.1016/S0959-4388(00)00128-8
  28. Kelleher III, R.J., Govindarajan, A., Tonegawa, S. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron. 44(1):59-73, 2004. https://doi.org/10.1016/j.neuron.2004.09.013
  29. Bourtchouladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., Silva, A.J. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell. 79(1):59-68, 1994. https://doi.org/10.1016/0092-8674(94)90400-6
  30. Mizuno, M., Yamada, K., Maekawa, N., Saito, K., Seishima, M., Nabeshima, T. CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav Brain Res. 133(2):135-141, 2002. https://doi.org/10.1016/S0166-4328(01)00470-3
  31. West, A.E., Chen, W.G., Dalva, M.B., Dolmetsch, R.E., Kornhauser, J.M., Shaywitz, A.J., Takasu, M.A., Tao, X., Greenberg, M.E. Calcium regulation of neuronal gene expression. Proc Natl Acad Sci USA. 98(20):11024-11031, 2001. https://doi.org/10.1073/pnas.191352298