DOI QR코드

DOI QR Code

Depolarization Ratio Retrievals Using AERONET Sun Photometer Data

  • Lee, Kyung-Hwa (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Muller, Detlef (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Noh, Young-Min (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Shin, Sung-Kyun (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Shin, Dong-Ho (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • Received : 2010.06.28
  • Accepted : 2010.08.25
  • Published : 2010.09.25

Abstract

We present linear particle depolarization ratios (LPDRs) retrieved from measurements with an AERONET Sun photometer at the Gwangju Institute of Science and Technology (GIST), Korea ($35.10^{/circ}N$, $126.53^{\circ}E$) between 19 October and 3 November 2009. The Sun photometer data were classified into three categories according to ${\AA}$ngstr$\ddot{o}$ exponent and size distribution: 1) pure Asian dust (19 October 2009), 2) Asian dust mixed with urban pollution observed in the period from 20-26 October 2009, and 3) clean conditions (3 November). We show that the LPDRs can be used to distinguish among Asian dust, mixed aerosol, and non-Asian dust in the atmosphere. The mean LPDR of the pure Asian dust case is 23 %. Mean LPDRs are 13 % for the mixed case. The lowest mean LPDR is 6 % in the clean case. We compare our results to vertically resolved LPDRs (at 532 nm) measured by a Raman LIDAR system at the same site. In most cases, we find good agreement between LPDRs derived with Sun photometer and measured by LIDAR.

Keywords

References

  1. J. Hansen, W. Rossow, B. Carlson, A. Lacis, L. Travis, A. D. Genio, I. Fung, B. Cairns, M. Mishchenko, and M. Sato, “Low-cost long-term monitoring of global climate forcings and feedbacks,” Climatic Change 31, 247-271 (1995). https://doi.org/10.1007/BF01095149
  2. P. B. Russell, P. V. Hobbs, and L. L. Stowe, “Aerosol properties and radiative effects in the United States east coast haze plume: an overview of the tropospheric aerosol radiative forcing observational experiment (TARFOX),” J. Geophys. Res. 104, 2213-2222 (1999). https://doi.org/10.1029/1998JD200028
  3. V. Ramanathan and Y. Feng, “Air pollution, greenhouse gases and climate change: global and regional perspectives,” Atmos. Environ. 43, 37-50 (2009). https://doi.org/10.1016/j.atmosenv.2008.09.063
  4. T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B. J. Sohn, J. G. Won, S. C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in East Asia,” J. Geophys. Res. 106, 18, 345-18, 359 (2001). https://doi.org/10.1029/2000JD900554
  5. M. Yoshino, “Climatology of yellow sand (Asian sand, Asian dust or Kosa) in East Asia,” Science In China 45, 59-70 (2002). https://doi.org/10.1007/BF02878390
  6. I. Mori, M. Nishikawa, T. Tanimura, and H. Quan, “Change in size distribution and chemical composition of Kosa (Asian dust) aerosol during long-range transport,” Atmos. Environ. 37, 4253-4263 (2003). https://doi.org/10.1016/S1352-2310(03)00535-1
  7. Y. Iwasaka, M. Yamato, R. Imasu, and A. Ono, “Transport of Asian dust (Kosa) particles; importance of weak Kosa events on the geochemical cycle of soil particles,” Tellus 40B, 494-503 (1988). https://doi.org/10.1111/j.1600-0889.1988.tb00119.x
  8. X. Y. Zhang, S. L. Gong, Z. X. Shen, F. M. Mei, X. X. Xi, L. C. Liu, Z. J. Zhou, D. Wang, Y. Q. Wang, and Y. Cheng, “Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. network observations,” J. Geophys. Res. 108, doi:10.1029/2002JD002632 (2003).
  9. V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, and J. Gasteiger, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus 61B, 165-179 (2009).
  10. K. Sassen, “The polarization LIDAR technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991). https://doi.org/10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2
  11. T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y. S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman LIDAR measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36, 5479-5489 (2002). https://doi.org/10.1016/S1352-2310(02)00664-7
  12. D. Muller, K. Franke, A. Ansmann, and D. Althausen, “Indo-Asian pollution during INDOEX: microphysical particle properties and single-scattering albedo inferred from multiwavelength LIDAR observations,” J. Geophys. Res. 108, doi:10.1029/2003JD003538 (2003).
  13. T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman LIDAR over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, doi:10.1029/2004GL021105 (2004).
  14. T. Murayama, H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, “Application of LIDAR depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles,” J. Geophys. Res. 104, 31, 781-31, 792 (1999). https://doi.org/10.1029/1999JD900503
  15. F. Cairo, G. D. Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, “Comparison of various linear depolarization parameters measured by LIDAR,” Appl. Opt. 38, 4425-4432 (1999) https://doi.org/10.1364/AO.38.004425
  16. O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, doi:10.1029/2001GL014506 (2002).
  17. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1-16 (1998). https://doi.org/10.1016/S0034-4257(98)00031-5
  18. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20, 673-20, 696 (2000). https://doi.org/10.1029/2000JD900282
  19. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, doi:10.1029/2005JD006619 (2006).
  20. D. Muller, A. Ansmann, V. Freudenthaler, K. Kandler, C. Toledano, A. Hiebsch, J. Gasteiger, M. Esselborn, M. Tesche, B. Heese, D. Althausen, B. Weinzierl, and W. von Hoyningen-Huene, “Mineral dust observed with AERONET sun photometer, Raman LIDAR, and in-situ instruments during SAMUM 2006: shape-dependent particle properties,” J. Geophys. Res. 115, doi:10.1029/2009JD012523 (2010).
  21. H. Volten, O. Munoz, E. Rol, J. F. de Haan, W. Vassen, and J. W. Hovenier, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106, 17, 375-17, 401 (2001). https://doi.org/10.1029/2001JD900068
  22. T. Sakai, T. Shibata, S. A. Kwon, Y. S. Kim, K. Tamura, and Y. Iwasaka, “Free tropospheric aerosol backscatter, depolarization ratio, and relative humidity measured with the Raman LIDAR at Nagoya in 1994-1997: contributions of aerosols from the Asian continent and the Pacific Ocean,” Atmos. Environ. 34, 431-442 (2000). https://doi.org/10.1016/S1352-2310(99)00328-3
  23. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman LIDAR system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068-3082 (1992). https://doi.org/10.1364/AO.31.003068
  24. A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427-3428 (1980). https://doi.org/10.1364/AO.19.003427
  25. C. T. Chang, C. J. Tsai, C. T. Lee, S. Y. Chang, M. T. Cheng, and H. M. Chein, “Differences in PM10 concentrations measured by ${\beta}$-gauge monitor and hi-vol sampler,” Atmos. Environ. 35, 5741-5748 (2001). https://doi.org/10.1016/S1352-2310(01)00369-7
  26. D. Muller, B. Weinzierl, A. Petzold, K. Kandler, A. Ansmann, T. Müller, M. Tesche, V. Freudenthaler, M. Esselborn, B. Heese, D. Althausen, A. Schladitz, S. Otto, and P. Knippertz, “Mineral dust observed with AERONET sun photometer, Raman LIDAR, and in-situ instruments during SAMUM 2006: shape-independent particle properties,” J. Geophys. Res. 115, doi:10.1029/2009JD012520 (2010).
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, USA, 1983), p. 541.
  28. D. H. Shin, Y. M. Noh, B. Tatarov, S. K. Shin, Y. J. Kim, and D. Müller, “Multiwavelength aerosol Raman LIDAR for optical and microphysical aerosol typing over East Asia,” in Proc. International Laser Radar Conference (St. Petersburg, Russia, Jul. 2010), CD, paper S01P 52.
  29. K. H. Lee, D. Müller, A. Ansmann, M. Tesche, D. Althausen, M. Esselborn, B. Heese, B. Weinzierl, A. Petzold, K. Kandler, and C. Toledano, “LIDAR ratios and depolarization ratios of Saharan dust measured with LIDAR and inferred from AERONET sun photometer during SAMUM 2006,” in Proc. International Laser Radar Conference (St. Petersburg, Russia, Jul. 2010), CD, paper S9P 04.

Cited by

  1. Retrieval of Depolarization ratio using Sunphotometer data and Comparison with LIDAR Depolarization ratio vol.32, pp.2, 2016, https://doi.org/10.7780/kjrs.2016.32.2.6
  2. Aerosol Optical Properties Retrieval and Separation of Asian Dust using AERONET Sun/Sky Radiometer Measurement at the Asian Dust Source Region vol.32, pp.3, 2016, https://doi.org/10.7780/kjrs.2016.32.3.4
  3. Utilization of the depolarization ratio derived by AERONET Sun/sky radiometer data for type confirmation of a mixed aerosol plume over East Asia vol.37, pp.10, 2016, https://doi.org/10.1080/01431161.2016.1176274
  4. Retrieval of Depolarization ratio using Sunphotometer data and Comparison with LIDAR Depolarization ratio vol.32, pp.2, 2016, https://doi.org/10.7780/kjrs.2016.32.2.3