DOI QR코드

DOI QR Code

Optimal Design of Dielectric-loaded Surface Plasmon Polariton Waveguide with Genetic Algorithm

  • Jung, Jae-Hoon (Department of Electronics and Electrical Engineering, Dankook University)
  • Received : 2010.07.23
  • Accepted : 2010.08.11
  • Published : 2010.09.25

Abstract

We propose a design and optimization method for a dielectric-loaded surface plasmon polariton waveguide using a genetic algorithm. This structure consists of a polymer ridge on top of two layers of substrate and gold film. The thickness, width and refractive index of the ridge are designed to optimize the figures of merit including mode confinement and propagation length. The modal analysis combined with the effective index method shows that the designed waveguide exhibits a fundamental propagation mode with high mode confinement while ensuring that the propagation loss remains relatively low.

Keywords

References

  1. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circiuts, S. I. Bozhevolnyi, ed. (Pan Stanford Publishing, Singapore, 2009), Chapter 1.
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, Berlin, Germany, 1988).
  3. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Comm. 244, 455-459 (2005). https://doi.org/10.1016/j.optcom.2004.09.045
  4. A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237-4243 (2005). https://doi.org/10.1364/OPEX.13.004237
  5. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 24, 912-918 (2006). https://doi.org/10.1109/JLT.2005.862470
  6. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” IEEE J. Lightwave Technol. 24, 4391-4401 (2006). https://doi.org/10.1109/JLT.2006.883683
  7. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004). https://doi.org/10.1063/1.1835997
  8. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000). https://doi.org/10.1103/PhysRevB.61.10484
  9. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005). https://doi.org/10.1103/PhysRevB.71.165431
  10. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413-425 (2008). https://doi.org/10.1364/OE.16.000413
  11. G. Veronis, Z. Yu, S. Kocabas, D. Miller, M. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett. 7, 302-308 (2009). https://doi.org/10.3788/COL20090704.0302
  12. T. Holmgaard and S. I. Bozhevolnyi, “Thoretical analysis of dielectric-load surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007). https://doi.org/10.1103/PhysRevB.75.245405
  13. A. V. Krasavin and A. V. Zayats, “Three-dimentional numerical modeling of photonic integration with delectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008). https://doi.org/10.1103/PhysRevB.78.045425
  14. Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmonpolariton waveguides,” Opt. Express 17, 3610-3618 (2009). https://doi.org/10.1364/OE.17.003610
  15. J. Skaar and K. M. Risvik, “A genetic algorithm for the inverse problem in synthesis of fiber gratings,” IEEE J. Lightwave Technol. 16, 1928-1932 (1998). https://doi.org/10.1109/50.721082
  16. G. Cormier, R. Boudreau, and S. Thériault, “Real-coded genetic algorithm for Bragg grating parameter synthesis,” J. Opt. Soc. Am. B 18, 1771-1776 (2001). https://doi.org/10.1364/JOSAB.18.001771
  17. G. W. Chern and L. A. Wang, “Design of binary long-period fiber grating filters by the inverse-scattering method with genetic algorithm optimization,” J. Opt. Soc. Am. A 19, 772-780 (2002). https://doi.org/10.1364/JOSAA.19.000772
  18. D. Dai, “Subwavelength silica-sased optical waveguide with a multilayered buffer for sharp bending,” IEEE J. Lightwave Technol. 27, 2489-2494 (2009). https://doi.org/10.1109/JLT.2008.2011501
  19. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467-9476 (2006). https://doi.org/10.1364/OE.14.009467
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, USA, 1985).
  21. J. H. Holland, Adaptation in Natural and Artificial Systems (Ann Arbor: Univ. of Michigan Press, USA, 1975).
  22. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Boston, USA, 1989).

Cited by

  1. Design of Plasmonic Slot Waveguide with High Localization and Long Propagation Length vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.305
  2. All Optical Logic Gates Based on Two Dimensional Plasmonic Waveguides with Nanodisk Resonators vol.16, pp.4, 2012, https://doi.org/10.3807/JOSK.2012.16.4.432
  3. Investigating the optical NOR gate using plasmonic nanorods vol.29, pp.5, 2016, https://doi.org/10.1002/jnm.2142
  4. Wideband Gain Flattened Hybrid Erbium-doped Fiber Amplifier/Fiber Raman Amplifier vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.342
  5. Numerical Investigation of Tunable Band-pass\band-stop Plasmonic Filters with Hollow-core Circular Ring Resonator vol.15, pp.1, 2011, https://doi.org/10.3807/JOSK.2011.15.1.082
  6. Investigating the optical nand gate using plasmonic nano-spheres vol.47, pp.11, 2015, https://doi.org/10.1007/s11082-015-0236-9
  7. All-optical XOR and NAND logic gates based on plasmonic nanoparticles vol.392, 2017, https://doi.org/10.1016/j.optcom.2017.02.007
  8. Active Nanophotonic Circuitry Based on Dielectric-loaded Plasmonic Waveguides vol.3, pp.12, 2015, https://doi.org/10.1002/adom.201500329
  9. Investigating the optical XNOR gate using plasmonic nano-rods vol.19, 2016, https://doi.org/10.1016/j.photonics.2016.02.001