Seismic Velocity Structure Along the KCRT-2008 Profile using Traveltime Inversion of First Arrivals

초동주시 역산을 통한 KCRT-2008 측선 하부의 지진파 속도구조

  • Kim, Ki-Young (Department of Geophysics, Kangwon National University) ;
  • Lee, Jung-Mo (Department of Geology, Kyungpook National University) ;
  • Baag, Chang-Eob (School of Earth & Environmental Sciences, Seoul National University) ;
  • Jung, Hee-Ok (Department of Ocean System Engineering, Kunsan National University) ;
  • Hong, Myung-Ho (Department of Geophysics, Kangwon National University) ;
  • Kim, Jun-Yeong (Department of Geophysics, Kangwon National University)
  • 김기영 (강원대학교 지구물리학과) ;
  • 이정모 (경북대학교 지질학과) ;
  • 박창업 (서울대학교 지구환경과학부) ;
  • 정희옥 (군산대학교 해양시스템공학과) ;
  • 홍명호 (강원대학교 지구물리학과) ;
  • 김준영 (강원대학교 지구물리학과)
  • Received : 2010.01.27
  • Accepted : 2010.02.25
  • Published : 2010.05.28

Abstract

To investigate the velocity structure in the central and southern parts of the Korean peninsula, a 299-km NW-SE seismic refraction profile KCRT-2008was obtained across major tectonic boundaries. Seismic waves were generated by detonating 250 ~ 1500 kg explosives at depths of 50 ~ 100 m in eight drill holes located at intervals of 21 ~ 113 km. The seismic signals were detected by 4.5 Hz geophones at a nominal interval of 500 m. The first-arrival times were inverted to derive a velocity tomogram. The raypaths indicate several mid-crust interfaces including those at approximate depths of 2 ~ 3, 11 ~ 13, and 20 km. The Moho discontinuity with refraction velocity of 7.7 to 8.1 km/s has a maximum depth of 34.5 km under the central portion of the peninsula. The Moho becomes shallower as the Yellow Sea and the East Sea are approached on the west and east coasts of the peninsula, respectively. The depth of the 7.6 km/s velocity contour varies from 31.3 km to 34.4 km. The velocity tomogram shows the existence of a 129 km wide low-velocity zone centered at 7.2 km depth under the Okchon fold belt and Gyeonggi massif and low-velocity(< 5.4 km/s) rocks in the Gyeongsang sedimentary basin with a maximum thickness of 2.6 km

한반도 중남부 지각 속도구조를 밝히기 위해서, 주요 지체구조 경계와 거의 직각을 이루는 북서-남동 방향의 299 km 측선(KCRT-2008)을 따라 대규모 인공지진파 실험을 실시하였다. 21~113 km 간격의 깊이 50~100 m인 8개시추공에서 250~1500 kg의 폭약을 발파하였고, 발생된 지진파 신호는 측선을 따라 평균 500 m 간격으로 매설한 4.5Hz 수신기로 수신하였다. 초동주시를 토모그래피 방식으로 역산한 결과, 파선경로는 2~3, 11~13, 20 km 깊이에 지각 내 굴절면이 존재함을 보인다. 굴절파 속도 7.7~8.1 km/s의 모호면은 중앙부에서 최대 34.2 km 깊이에 달하며, 동해와 황해로 접근하면서 얕아진다. 속도 7.6 km/s 등치선의 깊이는 31.3~34.4 km의 범위에서 변한다. 역산된 속도모델은 옥천계와 경기육괴 하부에, 깊이 7.2 km에 중심을 둔 저속도층이 129km까지 수평으로 연장되어 있고, 경상분지에는 속도5.4 km/s 이하의 저속도 암석이 최대 2.6 km 두께로 쌓여 있는 모습을 보여준다.

Keywords

References

  1. 김성균, 1995, 한반도의 지각구조에 관한 연구, 지질학회지, 31, 393-403.
  2. 김성균, 정부흥, 1985, 한국 남부지역의 지각구조, 광산지질학회지, 18, 151-157.
  3. 민경덕, 정종대, 1985, 중력탐사에 의한 경상층군내 왜관-포항간의 지하구조 연구, 광산지질학회지, 18, 321-329.
  4. 최광선, 공영세, 이화경, 1993, 중력자료 해석에 의한 한반도 일원의 지각구조, 한국지구과학회, 14, 225-230.
  5. Chang, S. J. and Baag, C. E., 2005, Crustal structure in southern Korea from joint analysis of teleseismic receiver functions and surface-wave dispersion, Bull. Seism. Soc. Am., 95, 1516-1534. https://doi.org/10.1785/0120040080
  6. Chang, S. J., Baag, C. E., and Charles, A. L., 2004, Joint analysis of teleseismic receiver functions and surface wave dispersion using the genetic algorithm, Bull. Seis. Soc. Am., 94, 691-704. https://doi.org/10.1785/0120030110
  7. Cho, H.-M., Baag, C.-E., Lee, J. M., Moon, W. M., Jung, H., Kim, K. Y., and Asudeh, I., 2006, Crustal velocity structure across the southern Korean Peninsula from seismic refraction survey, Geophysical Research Letter, 33, L06307, doi:10.1029/2005GL025145.
  8. Chough, S. K., Kwon, S.-T., Ree, J.-H., and Choi, D. K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view: Earth-Science Reviews, Elsevier, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  9. Jung, H., Jang, Y., Lee, J. M., Moon, M., Baag, C.-E., Kim, K. Y., and Jo, B. G., 2007, Shear wave velocity and attenuation structure for the shallow crust of the southern Korean peninsula from short period Rayleigh waves, Tectonophysics, 429, 253-265. https://doi.org/10.1016/j.tecto.2006.10.003
  10. Jung, H., Jang, Y., Lee, J. M., Moon, W., Baag, C.-E., Kim, K. Y., and Jo, B. G., 2008, Shallow-depth shear wave velocity structure of the southern Korean Peninsula obtained from two crustal-scale refraction profiles, Journal of Applied Geophysics, doi:10.1016/j.jappgeo.2008.08.007.
  11. Kim, K. Y., Lee, J. M., Moon, W., Baag, C.-E., Jung, H. O., and Hong, M. H., 2007a, Crustal structure of the southern Korean peninsula from seismic waves generated by large explosions in 2002 and 2004, Pure and Applied Geophysics, 164, 97-113. https://doi.org/10.1007/s00024-006-0149-4
  12. Kim, K. Y., Lee, J. M., Moon, W., Baag, C.-E., Jung, H., and Lee, S. Y., 2007b, Seismic reflection image of the crust structure along the KCRT-2002 profile in the southern Korean peninsula, Geosciences Journal, 11, 219-228. https://doi.org/10.1007/BF02913935
  13. Kim, O. J., 1988, Tectonic Provinces in Geology of Korea, Kyohak-sa, Seoul, 237-252.
  14. Kim, S. K., 1979, Geodetic and geophysical analyses of gravity data in Korea, Mining Geology, 12, 17-28.
  15. Lee, K., 1979, On crustal structure of the Korean peninsula, J. Geol. Soc. Korea, 15, 253-258.
  16. Lo, T. and Inderwiesen, P., 1994, Fundamentals of Seismic Tomography, Society of Exploration Geophysicists, Tulsa.
  17. Lowrie, W., Fundamentals of Geophysics (Cambridge University Press, Cambridge 1997).
  18. Saito, H., 1989, Traveltimes and raypaths of first arrival seismic waves: Computation method based on Huygens' principle, 59th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 244-247.