Effect of Dry Grinding of Laterite on the Extraction of Nickel and Cobalt

라테라이트광의 건식분쇄가 니켈 및 코발트의 침출에 미치는 영향

  • Kim, Wan-Tae (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Do-Young (Energy and Resources Engineering, Chonnam National University) ;
  • Kim, Sang-Bae (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 김완태 (한국지질자원연구원 광물자원연구본부) ;
  • 최도영 (전남대학교 에너지자원공학과) ;
  • 김상배 (한국지질자원연구원 광물자원연구본부)
  • Received : 2010.09.06
  • Accepted : 2010.09.27
  • Published : 2010.09.30

Abstract

We investigated the effect of dry grinding of laterite on the extraction of nickel and cobalt. The major chemical compositions of the sample for this work were $SiO_2$, $Fe_2O_3$ and MgO. The sample contained 0.81% Ni and 0.02% Co. The major minerals of the sample were lizardite and quartz with minor amounts of forsterite and enstatite. The mean particle size, specific surface area and density of the ground sample decreased with increasing grinding time, while the amorphization of lizardite increased as identified by XRD analysis. The grinding enabled the extraction ratio of Ni and Co to increase by the breakdown of Mg-OH bonding in the lizardite structure. However, physical properties of quartz were not changed by grinding. The extraction ratio of Ni and Co increased with increasing grinding time. Approximately 80% of Ni and Co were extracted regardless of the kind of acid solutions when the sample was ground for 60 minutes.

본 연구에서는 라테라이트광의 건식 분쇄가 니켈 및 코발트의 침출에 미치는 영향을 조사하였다. 시료로 사용한 라테라이트광은 주로 $SiO_2$, $Fe_2O_3$, MgO로 이루어져 있으며, 니켈과 코발트의 함량은 0.81% Ni, 0.02% Co이었다. 주 구성 광물은 리자다이트와 석영이며, 미량의 포스터라이트와 엔스터타이트를 함유하고 있었다. 분쇄가 진행됨에 따라 시료의 평균입도, 비표면적, 밀도는 감소하는 경향을 보였으며, X-선 회절분석을 통해 리자다이트의 비정질화가 진행됨을 확인하였다. 분쇄에 의한 석영의 물성변화는 나타나지 않았으나, 리자다이트의 Mg-OH 결합이 파괴됨으로써 니켈 및 코발트의 침출율이 향상됨을 알 수 있었다. 분쇄가 진행됨에 따라 니켈과 코발트의 침출율은 증가하였으며, 60분 분쇄한 시료의 경우, 사용한 무기산의 종류에 관계없이 니켈과 코발트의 침출율은 약 80%로 나타났다.

Keywords

References

  1. Avvakumov, E.G., Devyatkina, E.T., and Kosova, N.V. (1994) Mechanochemical reaction of hydrated oxides. J. Solid State Chem., 113, 379-383. https://doi.org/10.1006/jssc.1994.1384
  2. Boldyrev, V.V. (1987) Mechanochemistry of inorganic solid. Thermo. Acta, 110, 303-317. https://doi.org/10.1016/0040-6031(87)88239-4
  3. Dalvi, A.D., Bacon, W.G.. and Osborne, R.C. (2004) The past and the future of nickel laterite. PDAC Int. Convent., 7-10.
  4. Delogu, F., Orru, R., and Gao G. (2003) A novel macro-kinetic approach for mechanochemical reactions. Chem. Eng. Sci., 58, 815-821. https://doi.org/10.1016/S0009-2509(02)00612-7
  5. Filio, J.M., Sugiyama, K., Kasai, E., and Saito, F. (1993) Effect of dry mixed grinding of talc, kaolinite and gibbsite on preparation of cordierite ceramics. J. Chem. Eng. Japan., 26, 565-569. https://doi.org/10.1252/jcej.26.565
  6. Imaizumi, T., Inoue, T., and Onodera, J. (1974) Experiments for the processing of nickel ore from New Caledonia. Proc. Ann. Mtg. Min. Met. Inst. Japan, 213-214.
  7. Kano, J., Saeki, S., Saito, F., Tanjo, M., and Yamajaki, S. (2000) Application of dry grinding to reduction in transformation temperature of aluminum hydroxide. Int. J. Miner. Process., 60, 91-100. https://doi.org/10.1016/S0301-7516(00)00005-3
  8. Kim, W., Zhang, Q., and Saito, F. (2000) Syntheses of zeolite-A and X from kaolinite activated by mechanochemical treatment. J. Chem. Eng. Japan, 33. 217-221. https://doi.org/10.1252/jcej.33.217
  9. Kim, W. and Saito, F. (2000) Effect of grinding on synthesis of MgAl2O4 spinel from a powder mixture of $Mg(OH)_2$ and $Al(OH)_3$. Powder Technol., 113, 109-113. https://doi.org/10.1016/S0032-5910(00)00208-4
  10. Lesic, D. (1963) Beneficiation of a low-grade serpentinic iron-nickel-chromium-cobalt ore in a dense liquid. Proc. 6th Int. Miner. Proc. Congr., 323-331.
  11. Lin, I.J. and Navid, S. (1979) Review of the phase transformation and synthesis of inorganic solids obtained by mechanical treatment. Mater. Sci. Eng., 39, 193-209. https://doi.org/10.1016/0025-5416(79)90059-4
  12. Luo, W., Feng, Q., Ou, L., Zhang, G., and Lu, Y. (2009) Fast dissolution of nickel from a lizardite-rich saprolitic laterite by sulphuric acid at atmospheric pressure. Hydrometallurgy, 96, 171-175. https://doi.org/10.1016/j.hydromet.2008.08.001
  13. Luo, W., Feng, Q., Ou, L., Zhang, G., and Chen, Y. (2010) Kinetics of saprolitic laterite by sulphuric acid at atmospheric pressure. Miner. Eng., 23, 458-462. https://doi.org/10.1016/j.mineng.2009.10.006
  14. Madejov, J., Janek, M., Komadel, P., Herbert, H.J., and Moog, H.C. (2002) FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Appl. Clay Sci., 20, 255-271. https://doi.org/10.1016/S0169-1317(01)00067-9
  15. McDonald, R.G. and Whittington, B.I. (2008) Atmospheric acid leaching of nickel laterites review, Part I. Sulfuric acid technologies. Hydrometallurgy, 91, 35-55. https://doi.org/10.1016/j.hydromet.2007.11.009
  16. Onodera, J., Inoue, T., and Imaizumi, T. (1987) Attempts at the beneficiation of lateritic nickel ore. Int. J. Miner. Process., 19, 25-42. https://doi.org/10.1016/0301-7516(87)90030-5
  17. Senna, M. (2007) Smart mechanochemistry-Charge transfer control for tailored solid-state reaction under minimum external energy. J. Alloy Comp., 434-435, 768-772. https://doi.org/10.1016/j.jallcom.2006.08.238
  18. Taniuchi, K. (1964) Studies on the nickel extraction-Mineralogical composition of ganierite ore. J. Min. Met. Inst. Japan, 80, 683-688.
  19. Valix, M. and Cheung, W.H. (2002) Effect of sulfur on the mineral phases of laterite ores at high temperature reduction. Miner. Eng., 15, 523-530. https://doi.org/10.1016/S0892-6875(02)00069-9
  20. Whittington, B.I., McDonald, R.G., Johnson, J.A., and Muir, D.M. (2003a) Pressure acid leaching of arid-region nickel laterite ore, Part I. Effect of water quality. Hydrometallurgy, 70, 31-46. https://doi.org/10.1016/S0304-386X(03)00043-4
  21. Whittington, B.I., Johnson, J.A., Quan, L.P., McDonald, R.G., and Muir, D.M. (2003b) Pressure acid leaching of arid-region nickel laterite ore, Part II. Effect of ore type. Hydrometallurgy, 70, 47-62. https://doi.org/10.1016/S0304-386X(03)00044-6
  22. Zhang, Q., Kasai, E., and Saito, F. (1996) Mechanochemical changes in gypsum when dry ground with hydrated minerals. Powder Technol., 87, 67-71. https://doi.org/10.1016/0032-5910(95)03069-7