DOI QR코드

DOI QR Code

Recent research trends on Bio-MEMS

Bio-MEMS분야의 최근 연구동향

  • Park, Se-Kwang (Department of Electrical Engineering, Kyungpook National University) ;
  • Yang, Joo-Ran (Department of Electrical Engineering, Kyungpook National University)
  • 박세광 (경북대학교 IT대학 전기공학과) ;
  • 양주란 (경북대학교 IT대학 전기공학과)
  • Received : 2010.04.26
  • Accepted : 2010.05.10
  • Published : 2010.07.31

Abstract

MEMS(micro electro mechanical systems) is a technology for the manufacture hyperfine structure, as a micro-sensor and a driving device, by a variety of materials such as silicon and polymer. Many study for utilizing the MEMS applications have been performed in variety of fields, such as light devices, high frequency equipments, bio-technology, energy applications and other applications. Especially, the field of Bio-MEMS related with bio-technology is very attractive, because it have the potential technology for the miniaturization of the medical diagnosis system. Bio-MEMS, the compound word formed from the words 'Bio-technology' and 'MEMS', is hyperfine devices to analyze biological signals in vitro or in vivo. It is extending the range of its application area, by combination with nano-technology(NT), Information Technology(IT). The LOC(lab-on-a-chip) in Bio-MEMS, the comprehensive measurement system combined with Micro fluidic systems, bio-sensors and bio-materials, is the representative technology for the miniaturization of the medical diagnosis system. Therefore, many researchers around the world are performing research on this area. In this paper, the application, development and market trends of Bio-MEMS are investigated.

Keywords

References

  1. 이성호, “바이오멤스 분야의 응용과 개발동향”, Special Report / BioMEMS, 나노종합팹센터.
  2. 윤광석, “바이오멤스 및 마이크로 시스템 적용을 위한 3차원 마이크로 유로 제작”, J. Kor. Sensors Soc., vol. 15, no. 5, pp. 357-361, 2006. https://doi.org/10.5369/JSST.2006.15.5.357
  3. T. Okado “DNA chip 기술”, Life Science & Biotechnology 22, DNA Function Analysis Center Takara Shuzo Co., Ltd.
  4. 황교선, 김상경, 김태송, “바이오센서”, J. Kor. Sensors Soc., vol. 18, No. 4, pp. 251-262, 2009. https://doi.org/10.5369/JSST.2009.18.4.251
  5. M.A. Cooper, “Optical biosensors in drug discovery”, Nature Reviews-drug Discovery, vol. 1, pp. 515-528, 2002. https://doi.org/10.1038/nrd838
  6. J. Homla, S.S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review”, Sensors and Actuators B, vol. 54, pp. 3-15, 1999. https://doi.org/10.1016/S0925-4005(98)00321-9
  7. A.V. Nabok, A. Tsargorodskaya, A. Holloway, N.F. Starodub, A. Demchenko, and O. Gojster, “Registration of low molecular weight environmental toxins with total internal reflection ellipsometry”, Sensors, Proc. of IEEE, vol. 3, pp.1195-1198, 2004.
  8. C. Hanel and G. Gauglitz, “Comparison of reflectometric interference spectroscopy withother instruments for label-free optical detection”, Analytical and Bioanalytical Chemistry, vol. 372, pp.91-100, 2002.
  9. B. Lin, J. Qiu, J. Gerstenmeier, P. Li, H. Pien, J. Pepper, and B. Cunningham, “A label-free optical technique for detecting small molecule interactions”, Biosensors and Bioelectronics, vol. 17, pp. 827-834, 2002. https://doi.org/10.1016/S0956-5663(02)00077-5
  10. J.C. Hong, K.-H. Kim, J.-H. Shin, C. Huh, and G. Y. Sung, “Prediction of the limit of detection of an optical resonant reflection biosensor”, Optics Express, vol. 15, no. 14, pp. 8972-8978, 2007. https://doi.org/10.1364/OE.15.008972
  11. F. Hofmann, A. Frey, B. Holzaplf, M. Schienle, C. Paulus, P. Schindler-Bauer, R. Hintsche, E. Nebling, J. Albers, W. Gumbrecht, and R. Thewes, “Passive DNA sensor with gold electrodes fabricated in a CMOS backend process”, In Proc. of the 32nd European Solid-State Device Research Conf., Firenze, Italy, pp. 487-490, 2002.
  12. http://www.osmetech.com
  13. Z. Li, Y. Chen, X. Li, T.I. Kamins, K. Nauka, and R.S. Williams, “Sequence-specific label-free DNA sensors based on silicon nanowires”, Nano. Lett., Vol. 4, pp. 245-247, 2004. https://doi.org/10.1021/nl034958e
  14. Yuri L. Bunimovich, Y. S. Shin, W.-S. Yeo, M. Amori, G. Kwong, and J. R. Heath, “Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution”, J. Am. Chem. Soc., vol. 128, pp. 16323-16331, 2006. https://doi.org/10.1021/ja065923u
  15. Eric Stern, James F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. L.Van, T. M. Fahmy, and M. A. Reed, “Labelfree immunodetection with CMOS-compatible semiconducting nanowires”, Nature, vol. 445, pp. 519-522, 2007. https://doi.org/10.1038/nature05498
  16. Z. Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C.-H. Tung, Y. Fan, K. D. Buddharaju, and J. Kong, “Silicon nanowire arrays for label-free detection of DNA”, Anal. Chem., vol. 79, pp. 3291-3297, 2007. https://doi.org/10.1021/ac061808q
  17. A. S. Kim, C. S. Ah, H. Y. Yu, J.-H. Yang, I.-B. Baek, C.-G. Ahn, C. W. Park, M. S. Jun, and S. J. Lee, “Ultra-sensitive, label-free, and real-time immunodetection using silicon field-effect transistors”, Appl. Phys. Lett., vol. 9, no. 1, p. 103901, 2007.
  18. 성건용, 박찬우, 김경현, 양종헌, “유비쿼터스 건강관리를 위한 바이오센서 기술 동향”, 전자통신동향분석, 제24권, 제5호, 2009.
  19. “Micro news”, The Disruptive Semiconductor Technologies Magazine, 2010.
  20. “MEMS Trends”, Magazine on news technologies and market, issue no. 1, 2010.

Cited by

  1. Wireless Vibration Measurement System Using a 3-Axial Accelerometer Sensor vol.20, pp.2, 2011, https://doi.org/10.5369/JSST.2011.20.2.131