DOI QR코드

DOI QR Code

MREIT Conductivity Imaging of Pneumonic Canine Lungs: Preliminary Post-mortem Study

  • Kim, Hyung-Joong (Department of Biomedical Engineering, Kyung Hee University) ;
  • Kim, Young-Tae (Department of Biomedical Engineering, Kyung Hee University) ;
  • Jeong, Woo-Chul (Department of Biomedical Engineering, Kyung Hee University) ;
  • Minhas, Atul S. (Department of Biomedical Engineering, Kyung Hee University) ;
  • Lee, Tae-Hwi (Department of Biomedical Engineering, Kyung Hee University) ;
  • Lim, Chae-Young (BK21 Basic & Diagnostic Veterinary Specialist Program for Animal Diseases and Department of Veterinary Internal Medicine, Konkuk University) ;
  • Park, Hee-Myung (BK21 Basic & Diagnostic Veterinary Specialist Program for Animal Diseases and Department of Veterinary Internal Medicine, Konkuk University) ;
  • Kwon, O-Jung (Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Woo, Eung-Je (Department of Biomedical Engineering, Kyung Hee University)
  • Received : 2009.10.12
  • Accepted : 2010.03.17
  • Published : 2010.04.30

Abstract

In magnetic resonance electrical impedance tomography (MREIT), a current-injection MR imaging method is adopted to produce a cross-sectional image of an electrical conductivity distribution in addition to MR images. The purpose of this study was to test the feasibility of MREIT for differentiating the canine lung parenchyma without and with pneumonia. Three normal healthy beagles and two mixed breed dogs with pneumonia were used. After attaching electrodes around the chest, we placed the dog inside our MR scanner. We injected as much as 30 mA current in a form of short pulses into the chest region. Reconstructed conductivity images of normal canine lungs exhibit a peculiar pattern of a relatively coarse salt and pepper noise. On the contrary, conductivity images of pneumonic canine lungs show significantly enhanced contrast of the lesions while the corresponding MR images show a little bit of contrast in the middle and caudal lung parenchyma due to the accumulation of pleural fluid. This preliminary study indicates that MREIT imaging of the chest may deliver unique new diagnostic information.

Keywords

References

  1. C. Leutner, H. Schild, "MRI of the lung parenchyma", RoFo, vol. 173, pp. 168-175, 2001. https://doi.org/10.1055/s-2001-11593
  2. C.J. Bergin, D.C. Noll, J.M. Pauly, G.H. Glover, A. Macovski, "MR imaging of lung parenchyma: a solution to susceptibility", Radiology, vol 183, pp. 673-676, 1992. https://doi.org/10.1148/radiology.183.3.1584917
  3. J.R. Mayo, A. MacKay, N.L. Muller, "MR imaging of the lungs: value of short TE spin-echo pulse sequences", Am. J. Roentgenol., vol. 159, pp. 951-956, 1992. https://doi.org/10.2214/ajr.159.5.1414805
  4. D.L. Levin, Q. Chen, M. Zhang, R.R. Edelman, H. Hatabu, "Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging", Magn. Reson. Med., vol. 46, pp. 166-171, 2001. https://doi.org/10.1002/mrm.1172
  5. V.M. Mai, J. Knight-Scott, R.R. Edelman, Q. Chen, S. Keilholz-George, S.S. Berr,"1H magnetie resonance imaging of human lung using inversion recovery turbo spin echo", J. Magn. Reson. Imaging., vol 11, pp. 616-621, 2000. https://doi.org/10.1002/1522-2586(200006)11:6<616::AID-JMRI7>3.0.CO;2-2
  6. G.C. Scott, M.L.G. Joy, R.L. Armstrong, and R.M. Henkelman, "Measurement of nonuniform current density by magnetic resonance", IEEE Trans. Med. Imag., vol. 10, pp.362-374, 1991. https://doi.org/10.1109/42.97586
  7. N. Zhang, Electrical Impedance Tomography based on Current Density Imaging, Toronto, Canada: MS Thesis, Dept. of Elec. Eng, 1992.
  8. E.J. Woo, S.Y. Lee, and C.W. Mun, "Impedance tomography using internal current density distribution measured by nuclear magnetic resonance", SPIE, vol, 2299, pp. 377-385, 1994.
  9. O. Birgul, Y.Z. Ider, "Electrical impedance tomography using the magnetic field generated by injected currents", Proc. 18th Ann. Int. Conf. IEEE EMBS, pp. 784-785, 1996.
  10. Y.Z. Ider, and O. Birgul, "Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography (MR-EIT)", Elektrik, vol. 6, pp. 215-225, 1998.
  11. O. Kwon, E.J. Woo, J.R. Yoon, and J.K. Seo, "Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm", lEEE Trans. Biomed. Eng., vol. 49, pp. 160-167, 2002. https://doi.org/10.1109/10.979355
  12. E.J. Woo, and J.K. Seo,"Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging", Physiol. Meas., vol. 29, pp. R1-26, 2008. https://doi.org/10.1088/0967-3334/29/10/R01
  13. H.J. Kim, B.I. Lee, Y. Cho, Y.T. Kim, B.T. Kang, H.M. Park, S.Y. Lee, J.K. Seo, and E.J. Woo, "Conductivity imaging of canine brain using a 3 T MREIT system: postmortem experiments", Physiol. Meas., vol. 28, pp. 1341-1353, 2007. https://doi.org/10.1088/0967-3334/28/11/002
  14. H.J. Kim, T.I. Oh, Y.T. Kim, B.I. Lee, E.J. Woo, J.K. Seo, S.Y. Lee, O. Kwon, C. Park, B.T. Kang, and H.M. Park, "In vivo electrical conductivity imaging of a canine brain using a 3T MREIT system", Physiol. Meas.,vol. 29, pp. 1145-1155, 2008. https://doi.org/10.1088/0967-3334/29/10/001
  15. K. Jeon, A.S. Minhas, Y.T. Kim, W.C. Jeong, H.J. Kim, B.T. Kang, H.M. Park, C.O. Lee, J.K. Seo, E.J. Woo, "MREIT conductivity imaging of postmortem canine abdomen using CoReHA", Physiol. Meas., vol. 30, pp. 957-966, 2009. https://doi.org/10.1088/0967-3334/30/9/007
  16. C. Park, B.I. Lee, O. Kwon, and E.J. Woo, "Measurement of induced magnetic flux density using injection current nonlinear encoding (ICNE) in MREIT", Physiol. Meas.,vol. 28, pp. 117-127, 2007. https://doi.org/10.1088/0967-3334/28/2/001
  17. IIRC, CoReHA 1.0 Installation and User's Guide. Available via http://iirc.khu.ac.kr.,2009.
  18. K. Jeon, H.J. Kim, C.O. Lee, E.J. Woo, J.K. Seo, "CoReHA: conductivity reconstructor using harmonic algorithms for magnetic resonance electrical impedance tomography (MREIT). J. Biomed. Eng. Res. at press.
  19. J.K. Seo, S.W. Kim, S. Kim, J.J. Liu, E.J. Woo, K. Jeon, and C.O. Lee, "Local harmonic $B_z$ algorithm with domain decomposition in MREIT: computer simulation study", IEEE Trans. Med. Imag., vol. 27, pp. 1754-1761, 2008. https://doi.org/10.1109/TMI.2008.926055
  20. B.I. Lee, S.H. Oh, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, J.K. Seo, J.Y. Lee, and W.S. Baek, "Three-dimensional forward solver and its performance analysis in magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes", Phys. Med. Biol., vol. 48, pp. 1971-1986, 2003. https://doi.org/10.1088/0031-9155/48/13/309
  21. R. Sadleir, S. Grant, S.U. Zhang, B.I. Lee, H.C. Pyo, S.H. Oh, C. Park, E.J. Woo, S.Y. Lee, O. Kwon, and J.K. Seo, "Noise analysis in MREIT at 3 and 11 Tesla field strength", Physiol. Meas., vol. 26, pp. 875-884, 2005. https://doi.org/10.1088/0967-3334/26/5/023
  22. T.R. Wilkins, R.L. Wilkins, "Clinical and radiographic evidence of pneumonia", Radiol. Technol., vol. 77, pp. 106-110, 2005.
  23. H.U. Kauczor, K.F. Kreitner, "MRI of the pulmonary parenchyma", Eur. Radiol., vol. 9, pp. 1755-1764, 1999. https://doi.org/10.1007/s003300050919
  24. G. Lutterbey, J. Gieseke, M. von Falkenhausen, N. Morakkabati, H. Schild, "Lung MRI at 3.0T: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease", Eur. Radial., vol. 15, pp. 324-328, 2005. https://doi.org/10.1007/s00330-004-2548-1