Standards for Promoting Mathematical Communication in Elementary Classrooms

초등학교에서의 수학적 의사소통 목표와 성취요소 설정 - D.R.O.C 유형을 중심으로 -

  • Received : 2010.03.19
  • Accepted : 2010.04.09
  • Published : 2010.05.15

Abstract

The purpose of this study is to set appropriate targets for school-year levels and types of mathematical communication. First, I classify mathematical communication into four types as Discourse, Representation, Operation and Complex and refer to them collectively as the 'D.R.O.C pattern'. I have listed achievement factors based on the D.R.O.C pattern hearing opinions from specialists to set a target, then set a final target after a 2nd survey with specialists and teachers. I have set targets for mathematical communication in elementary schools suitable to its status and students' levels in our country. In NCTM(2000), standards of communication were presented only from kindergarten to 12th grade students, and, for four separate grade bands(prekindergarten through grade 2, grades 3-5, grades 6-8, grades 9-12), they presented characteristics of the same age group through analysis of classes where communication was active and the stated roles of teachers were suitable to the characteristics of each school year. In this study, in order to make the findings accessible to teachers in the field, I have classified types into Discourse, Representation, Operation and Complex (D.R.O.C Pattern) according to method of delivery, and presented achievement factors in detail for low, middle and high grades within each type. Though it may be premature to set firm targets and achievement factors for each school year group, we hope to raise the possibility of applying them in the field by presenting targets and achievement factors in detail for mathematical communication.

본 연구는 2007년 개정 수학과 교육과정의 목표에 새롭게 부각된 수학적 의사소통에 대한 중요성을 바탕으로 우리나라 초등학교에서 구현 가능한 수학적 의사소통 목표를 설정하기 위한 것이다. 구현 가능하도록 하기 위해 교사들이 이해하기 쉽도록 수학적 의사소통 유형을 전달방식에 따라 담화, 표현, 조작, 복합으로 구분하였으며, 학생 수준에 따른 수준별 교수 학습이 가능하도록 수학적 의사소통 유형별로 저 중 고학년에 따른 성취요소와 목표를 설정하였다. 성취요소와 목표 설정에 있어 타당성을 높이고자 전문가와 현장 교사들의 의견을 수렴하였다. 전문가와 교사 집단의 의견 중 각각 10%이상 부적절하다고 응답한 경우 판단 이유를 파악하여 삭제하거나 수정하였으나, 일부 특정 요소의 경우 국제적 동향이나 선행연구를 토대로 이상적인 목표로 문제가 없다고 판단될 경우 그대로 두거나 학년 이동만 한 것도 있다. 본 연구에서 설정된 초등학교 수학적 의사소통 성취요소와 목표는 수학교실에서 실질적으로 학생들의 다양한 수학적 의사소통을 돕고, 학생 수준을 파악하는데 큰 도움이 되길 기대한다.

Keywords

References

  1. 교육인적자원부 (2007). 수학과 교육과정(고시 제2007-79호[별책 8]), 서울: 대한교과서.
  2. 류희찬 (2006). 교과교육 전문화를 위한 과제. 우수연구결과발표대회(기조 강연). pp.3-13.
  3. 민용성 (2006). 학습자 중심의 교육목표 설정 및 진술에 관한 연구: 제7차 교육과정의 학교급별 교육 목표 개선을 중심으로. 학습자중심교과교육연구, 6(1), pp.323-341.
  4. 박미혜․방정숙 (2009). 개정 교육과정의 실험 적용에서 나타나는 수학적 의사소통 분석: 초등 1․2학년 탐구 활동과 이야기 마당을 중심으로. 수학교육학연구, 19(1), pp.163-183.
  5. 방정숙․정희진 (2006). 학습자 중심 교수법에 대한 초등 교사의 이해와 실행형태: 수학적 의사소통을 중심으로. 학습자중심교과교육연구, 6(1), pp.297-321.
  6. 송경화․임재훈 (2007). 초등학교 4학년 교실에서 정확한 수학적 언어 사용 문화의 형성. 학교수학, 9(2), pp.181-196.
  7. 신준식 (2007). 수학 수업에서 의사소통 분석: 언어상호작용을 중심으로. 한국수학교육학회지 시리즈C <초등수학교육>, 10(1), pp.15-28.
  8. 이종희․김선희 (2002). 수학적 의사소통. 서울: 교우사.
  9. 홍우주․방정숙 (2008). 초등학교 6학년 수업에서의 수학적 의사소통과 학생의 수학적 사고 분석. 한국학교수학학회논문집, 11(2), pp.201-219.
  10. Baroody, A. J., & Coslick, R. T. (1998). Fostering children's mathematical power: An investigative approach to K-8 mathematics instruction. Mahwah, NJ: Lawrence Erlbaum Associates. 권성룡 외 11인 공역 (2005). 수학의 힘을 길러주자: 왜? 어떻게?. 서울: 경문사.
  11. Battista, M. T. (1994). Teacher beliefs and the reform movement in mathematics. Phi Delta Kappan, 75(6), pp.462-470.
  12. Bishop, A. J. (2004). Mathematics education in its cultural context. In T. P. Carpenter, J. A. Dossey, & J. L. Koehler (Eds.), Classics in mathematics education research (pp.200-207). Reston, VA: National Council of Teachers of Mathematics.
  13. Brendefur, J. L., & Frykholm, J. A. (2000). Promoting mathematical communication in the classroom: Two pre-service teachers' conceptions and practices. Journal of Mathematics in Teacher Education, 3(2), pp.125-153. https://doi.org/10.1023/A:1009947032694
  14. Chapin, S. H., O'Connor, C., & Anderson, N. C. (2003). Classroom discussions: using mathematics talk to help students learn. Sausalito, CA: Math Solutions.
  15. Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997). Reflective discourse and collective reflection. Journal for Research in Mathematics Education, 28(3), pp.258-277. https://doi.org/10.2307/749781
  16. D'Ambrosio, U. (2004). Ethnomathematics and its place in the history and pedagogy of mathematics. In T. P. Carpenter, J. A. Dossey, & J. L. Koehler (Eds.), Classics in mathematics education research (pp.194-199). Reston, VA: National Council of Teachers of Mathematics.
  17. Griffiths, R., & Clyne, M. (1994). Language in the mathematics classroom: Talking, representing, recording. Portsmouth, NH: Heinemann.
  18. Hardy, I. (2001). The relationship between the use of representations and instructional discourse in mathematics tasks. Paper presented at the Annual Meeting of the American Educational Research Association (AERA). Seattle, Washington.
  19. Jacobs, J. K., & Morita, E. (2002). Japanese and American teachers' evaluation of videotaped mathematics lessons. Journal for Research in Mathematics Education, 33(3), pp.154-175. https://doi.org/10.2307/749723
  20. McGuire, M., & Harshman, K. (2002). The role of discourse in mathematical inquiry. Boise State University. (ERIC Document Reproduction Service No. ED 470 662).
  21. National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
  22. National Council of Teachers of Mathematics (2000). Principle and standards for school mathematics. Reston, VA: Author. 류희찬 외5인 공역 (2007). 학교수학을 위한 원리와 규준. 서울: 경문사.
  23. Ongstad, S. (2007). Language in mathematics? A comparative study of four national curricula. In S. Ongstad (ed.), Language in mathematics? A report to the council of Europe from the LAC group in mathematics education (pp.1-12). Oslo: June.
  24. Pirie, S. E. B. (1998). Crossing the gulf between thought and symbol: language as (slippery) stepping stones. In H. Steinbring, M. G. B. Buss, & A. Sierpinska (Eds.), Language and communication in the mathematics classroom (pp.7-29). Reston, VA: National Council of Teachers of Mathematics.
  25. Thompson, D. R,. & Chappell, M. F. (2007). Communication and representation as elements in mathematical literacy. Reading & Writing Quarterly, 23(2). pp.179-196. https://doi.org/10.1080/10573560601158495
  26. Wood, T. (1994). Patterns of interaction and the culture of mathematics classrooms. In S. Lerman (Ed.), The culture of the mathematics classroom (pp.149-168). Dordrecht, The Netherlands: Kluwer Academic.
  27. Wood, T. (1998). Alternative patterns of communication in mathematics classes: Funneling or focusing? In H. Steinbring, M. G. Bartolini-Bussi, A. Sierpinska (Eds.), Language and communication in the mathematics classroom (pp.167-178). Reston, VA: National Council of Teachers of Mathematics.
  28. Wood, T., & McNeal, B. (2003). Complexity in teaching and children's mathematical thinking. In N. Pateman, B. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education(Vol. 4, pp.435-442). CRDG, College of Education, University of Hawai'i: Psychology of Mathematics Education.