Reuse Technology of LiCl Salt Waste Generated from Electrolytic Reduction Process of Spent Oxide Fuel

전해환원공정발생 LiCl 염폐기물 재생기술

  • Received : 2009.12.18
  • Accepted : 2010.03.29
  • Published : 2010.03.30

Abstract

Layer crystallization process was tested for the separation(or concentration) of cesium and strontium fission products in a LiCl waste salt generated from an electrolytic reduction process of a spent oxide fuel. In a crystallization process, impurities (CsCl and $SrCl_2$) are concentrated in a small fraction of the LiCl salt by the solubility difference between the melt phase and the crystal phase. Based on the phase diagram of LiCl-CsCl-$SrCl_2$ system, the separation possibility by using crystallization was determined and the molten salt temperature profile during layer crystallization operation was predicted by using mathematical calculation. In the layer crystallization process, the crystal growth rate strongly affects the crystal structure and therefore the separation efficiency. In the conditions of about 20-25 l/min cooling air flow rate and less than 0.2g/min/$cm^2$ crystal flux, the separation efficiency of both CsCl and $SrCl_2$ showed about 90% by the layer crystallization process, assuming a LiCl salt reuse rate of 90wt%.

경막결정화를 이용한 산화물 사용후연료의 전해환원 공정에서 발생하는 LiCl 염폐기물 내 포함되어 있는 Cs 및 Sr을 분리(농축)에 대한 실험을 수행하였다. 결정화 공정에서 Cs 및 Sr과 같은 불순물들은 불순물들의 용융염상 및 결정상에 대한 용해도이 차리로 분리되어 최종적으로 작은 양의 LiCl 용융염내에 농축된다. 본 연구에서는 LiCl-CsCl-$SrCl_2$ 계에대한 고체-액체 상평형도를 통해 결정화를 통한 분리가능성을 파악하였으며 열전달방정식의 계산을 통해 경막결정화 운전중 LiCl 용융염상의 온도분포를 예측할 수 있었다. 경막결정화 공정에서 결정성장 속도는 분리효율에 큰 영향을 미쳤으며 90%의 LiCl 재생율을 가정할 경우 20-25 l/min의 냉각속도 그리고 $0.2g/min{\cdot}cm^2$ 보다 작은 결정성장 속도조건에서 각각의 Cs 및 Sr에 대하여 90% 정도의 분리효율을 나타내었다.

Keywords

References

  1. J. H. Yoo, K. P. Hong and H. S. Lee, "A Conceptual Design Study for a Spent Fuel Pyroprocessing Facility of a Demonstration Scale", J. Korean Radioactive Waste Society, 6(3). pp. 233-241 (2008).
  2. J. K. Kim, K. R. Kim, I. T. Kim, D. H. Ahn and H. S. Lee, "Thermal Release of LiCI Waste Salt from Pyroprocessing", J. Korean Radioactive waste Society, 7(2), pp. 73-78 (2009).
  3. Y. Katayama, R. Hagiwara, and Y. Ito, 'Precipitation of Rare Earth Compounds in LiCI-KCI Eutectic," J. Electrochem. Soc., 142(7), pp. 2174-2178 (1995). https://doi.org/10.1149/1.2044271
  4. M. F. Simpson, T. S. Yoo, R. W. Benedict, S. Phongikaroon, S. Frank, P. Sachdev and K. Hartman, "Strategic Minimization of High Level Waste From Pyroprocessing of Spent Nuclear Fuel," Proc. GLOBAL2007, pp. 1394-1397 (2007).
  5. H. C. Eun, H. C. Yang, H. S. Lee and I. T. Kim, "Thermal Behavior of PrCl3 in an Oxidizing Condition", J. Korean Radioactive Waste Society, 7(4). pp. 207-212 (2009).
  6. K. J. Kim and J. Ulrich, " Impurity Distribution in a Solid-Liquid Interface During Static Layer Crystallization", J. Colloid and Interface Science, 252, pp. 161-168 (2002). https://doi.org/10.1006/jcis.2002.8353
  7. S. R. Kang, J. Y. Koh, C. U. Kim and S. J. Park, "Effects of Cooling and Crystallizer Type on the Separation of Naphthalene Mixture by Layer Melt Crystallization", Clean Technology, 13(1), pp. 72-78 (2007).
  8. C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melancon, A. D. Pelton and S. Petersen, "Factsage Thermochemical Software and Database", Calphad, 26(2), pp. 189-228 (2002). https://doi.org/10.1016/S0364-5916(02)00035-4
  9. J. P. Holmann, Heat Transfer, 7th ed., pp. 115-118, McGRAW-HILL, New York (1992).
  10. K. J. Kim, K. M. Kim, H. Y. Lee and J. K. Kim, "Purification of Caprolactarn Crystals by Sweating Operation in Layer Melt Crystallization", J. Korean Ind. Eng. Chem., 13(5), pp. 428-433 (2002).
  11. A. Konig and A. Schreier, "Purification Potential of Melt Crystallization", Powder Technol., 121, pp. 88-92 (2001), https://doi.org/10.1016/S0032-5910(01)00379-5
  12. A. Chianese and N. Santilli, "Modelling of the Solid Layer Growth from Melt Crystallization-the Integral Formulation Approach", Chem. Eng. Sci., 53(1), pp. 107-111 (1998). https://doi.org/10.1016/S0009-2509(97)00277-7
  13. R. Scholz, K. Wangnick and J. Ulrich, "On the Distribution and Movement of Impurities in Crystalline Layers in Melt Crystallization Process", J. Phys., 26, pp. B156-B161 (1993).
  14. G. J. Janz, C. B. Allen, N. P. Bansal, R. M. Murphy and R.P.T. Tomkins. Physical Properties Data Compilations Relevant to Energy Storage, National Standard Reference Data System, NSRDS-NBS-61 (1979).