Physicochemical Characteristics of Soybeans Cultivated in Different Regions and the Accompanying Soybean Curd Properties

국내 산지별 대두와 이를 이용한 두부의 이화학적 특성 분석

  • Seo, Yu-Jin (Department of Food and Nutrition, Seoul National University) ;
  • Kim, Min-Kyoung (Department of Food and Nutrition, Seoul National University) ;
  • Lee, Seul (Department of Food and Nutrition, Seoul National University) ;
  • Hwang, In-Kyeong (Department of Food and Nutrition, Seoul National University)
  • 서유진 (서울대학교 식품영양학과) ;
  • 김민경 (서울대학교 식품영양학과) ;
  • 이슬 (서울대학교 식품영양학과) ;
  • 황인경 (서울대학교 식품영양학과)
  • Received : 2010.06.21
  • Accepted : 2010.07.30
  • Published : 2010.08.31

Abstract

The objective of this study was to investigate the physicochemical characteristics of soybeans cultivated in different regions and the accompanying soybean curd properties. To produce soybeans with regional competitiveness and demonstrate the distinctiveness of the soybean product, four regions(Paju, Andong, Muju, Hadong) and four varieties of soybean(Daewonkong, Daepungkong, Seonyukong, Cheogja 2) were selected for these experiments. There was a significant difference in the isoflavone content of soybeans and soybean curds(p<0.05). Soybeans from Andong had the highest content of genistein, daidzein and total isoflavone and soybeans from Hadong had the lowest content of these compound. Fatty acid composition of soybeans demonstrated a significant difference according to region(p<0.05). In particular, soybeans grown under adverse environmental conditions, such as high temperature and low latitude, contained the highest composition of oleic acid and the lowest composition of linoleic acid and linolenic acid. Although fatty acid content of soybean curd had a third of the fatty acid concentration of soybean, the same characteristic was observed in the fatty acid composition of soybean curd. In addition, both soybean and soybean curd had more than 80% unsaturated fatty acids and 50% of the unsaturated fatty acid content was linoleic acid. In conclusion, these results demonstrate the significant difference of soybean and soybean curd originating from different regions and showed the transition of nutritional constituents from soybean to soybean curd as a function of environmental factors. Therefore, we must consider these factors when manufacturing soy products.

본 연구는 지역경쟁력을 갖춘 대두의 생산 및 이를 이용한 가공제품의 차별성을 살펴보기 위해 경기도 파주, 경상북도 안동, 전라북도 무주, 경상남도 하동에서 재배되어 2009년 6월 15일에 파종한 대원콩, 대풍콩, 선유콩, 청자 2호와 이들로 만든 두부의 특성을 평가하였다. 일반성분에서는 대두의 산지별 특성이 두부의 일반성분에 영향을 미친 것으로 사료되었다. 대두의 isoflavone 함량은 모든 품종에서 안동지역의 함량이 다른 지역에 비해 유의적으로 많았고, 하동지역은 낮았다. 두부의 isoflavone 함량에서도 이와 같은 경향이 관찰되었다. 대두의 지방산 조성은 하동지역이 다른 지역보다 oleic acid의 조성이 높았으며, linolenic acid와 linoleic acid의 조성이 유의적으로 낮았다. 이는 두부의 지방산 조성에서도 비슷하게 나타났다. 이를 통해 산지별로 재배된 대두의 이화학적 특성이 산지에 따라 유의적인 차이가 있었고 이로 만든 두부에서도 유사한 것을 알 수 있었다. 즉 콩에서 두부로 제조될 때 산지별 대두의 특성이 최종 가공물에 영향을 미치는 것으로 판단되었다. 따라서 콩 가공제품을 제조할 때 산지별로 재배된 원료 콩의 이화학적 특성 차이를 고려한다면 보다 용도별 적합성이 뛰어나고 우수한 콩 가공제품의 제조와 가공적성평가 항목의 설정에 기초자료가 될 수 있을 것으로 판단된다.

Keywords

References

  1. 기상청. 2009. 자동기상관측연보. 기상청. 한국. 6-10월. p 7
  2. 농림수산식품부. 2009. 농림수산식품통계연보. Dongyang p&c. Korea. p 102, 209
  3. AOAC. 1990. AOAC, Official methods of analysis (15th edn.). Association of official analytical chemists. Washington DC
  4. Cherry JH, Bishop L, Hasegawa PM, Leffler HR. 1985. Differences in the fatty acid composition of soybean seed produced in northern and southern areas of the U.S.A. Phytochemistry. 24(2):237-241 https://doi.org/10.1016/S0031-9422(00)83527-X
  5. Christie WW. 1982. Lipid analysis (2nd edn.). Pergamon press, Oxford. p 22-23
  6. Cho YS, Song J, Koo BC, Seo JH, Kim SD, Choi IS, Shin JC, Yang WH, Ha TJ. 2007. Effects of color differentiation and seed size of soybean on isoflavone concentration in soybean. Korean J. Crop Sci. 52(4): 359-362
  7. Han WY, Park KY, Kim HT, Ko JM, Baek IY, Lee CY, Choung MG. 2008. Variations in growth characteristics and seed qualities of korean soybean landraces. Korean J. Crop Sci. 53(S):96-102
  8. Harue T, Hirokadzu T. 1971. Influence of location on the chemical composition of soybean seeds. National food research institute, ministry of agriculture and forestry, Koto-ku, Tokyo. 213-225
  9. Ha TJ, Lee JH, Shin SO, Shin SH, Han SI, Kim HT, Ko JM, Lee MH, Park KY. 2009. Changes in anthocyanin and isoflavone concentrations in black seed-coated soybean at different planting locations. J. Crop Sci. Biotech. 12(2):79-86 https://doi.org/10.1007/s12892-009-0093-9
  10. Jackson CJC, Dini JP, Lavandier C, Rupasinghe HPV, Faulkner H, Poysa V, Buzzell D, DeGrandis S. 2002. Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu. Process biochemistry. 37:1117-1123 https://doi.org/10.1016/S0032-9592(01)00323-5
  11. Kim CJ. 1998. 두부의 가공과 이용. J. East Asian Soc. Dietary Life. 8(4):508-533
  12. Kim CJ. 2009. 콩과 두부의 품질요인. Available from: http://www.thinkfood.co.kr/main/php/search_view.php?idx=34490. Accessed June 1, 2010
  13. Kim SL, Lee YH, Chi HY, Lee SJ, Kim SJ. 2007. Diversity in lipid contents and fatty acid composition of soybean seeds cultivated in korea. Korean J. Crop Sci. 52(3):348-357
  14. Kim YH. 2002. Current achievement and perspectives of seed quality evaluation in soybean. Korean J. Crop Sci. 47(S):95-106
  15. Kumar V, Rani A, Solanki S, Hussain SM. 2006. Influence of growing environment on the biochemical composition and physical characteristics of soybean seed. J. Food Compos. Anal. 19:188-195 https://doi.org/10.1016/j.jfca.2005.06.005
  16. Lee BY, Kim DM, Kim KH. 1990. Studies on the processing aptitude of the korean soybean cultivars for soybean curd. Korean J. Food Sci. Technol. 22(3):363-368
  17. Lee SJ, Ahn JK, Kim SH, Kim JT, Han SJ, Jung MY, Chung IM. 2003. Variation in isoflavone of soybean cultivars with location and storage duration. J. Agric. Food Chem. 51(11): 3382-3389 https://doi.org/10.1021/jf0261405
  18. Lee SJ, Yanb W, Ahna JK, Chung IM. 2003. Effects of year, site, genotype and their interactions on various soybean isoflavones. a field crops research. 81(2-3):181-192 https://doi.org/10.1016/S0378-4290(02)00220-4
  19. Maestri DM, Labuckas DO, Meriles JM, Lamarque AL, Zygadlo JA, Guzman CA. 1998. Seed composition of soybean cultivars evaluated in different environmental regions. J. Sci. Food Agric. 77:494-498 https://doi.org/10.1002/(SICI)1097-0010(199808)77:4<494::AID-JSFA69>3.0.CO;2-B
  20. Tsukamoto C, Shimada S, Igita K, Kudou S, Kokubun M, Okubo K, Kitamura K. 1995. Factors affecting isoflavone content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different Temperatures during Seed Development. J. Agric. Food Chem. 43:1184-1192 https://doi.org/10.1021/jf00053a012
  21. Wang HJ, Murphy PA. 1994. Isoflavone composition of american and japanese soybeans in iowa: effects of variety, crop year, and location. J. Agric. Food Chem. 42(8):1674-1677 https://doi.org/10.1021/jf00044a017
  22. Wang HJ, Murphy PA. 1996. Mass balance study of isoflavones during soybean processing. J. Agric. Food Chem. 44:2377-2383 https://doi.org/10.1021/jf950535p
  23. Wolf RB, Cavins JF, Kleiman R, Black LT. 1982. Effect of temperature on soybean seed constituents: oil, protein, moisture, fatty acids, amino acids. J. Am. Oil Chem. Soc. 59(5): 230-232 https://doi.org/10.1007/BF02582182
  24. Yang MH, Burton JW. 1997. Climatic influence on seed protein content in soybean(Glycine max). Korean J. Crop Sci. 42(5): 539-547
  25. Yi ES, Yi YS, Yoon ST, Lee HG. 2009. Variation in antioxidant components of black soybean as affected by variety and cultivation region. Korean J. Crop Sci. 54(1):80-87