DOI QR코드

DOI QR Code

A Novel Trp-rich Model Antimicrobial Peptoid with Increased Protease Stability

  • Bang, Jeong-Kyu (Division of Magnetic Resonance, Korea Basic Science Institute) ;
  • Nan, Yong-Hai (Department of Bio-Materials, Graduate School, and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University) ;
  • Lee, Eun-Kyu (Department of Bio-Materials, Graduate School, and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University) ;
  • Shin, Song-Yub (Department of Bio-Materials, Graduate School, and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University)
  • Received : 2010.07.01
  • Accepted : 2010.07.12
  • Published : 2010.09.20

Abstract

In order to increase protease stability of a novel Trp-rich model antimicrobial peptide, $K_6L_2W_3$ (KLWKKWKKWLK-$NH_2$)and investigate the effect of L-amino acid to peptoid residue conversion on biological functions, we synthesized its antimicrobial peptoid, $k_6l_2w_3$. Peptoid $k_6l_2w_3$ had similar bacterial selectivity compared to peptide $k_66L_2W_3$. The bactericidal rate of $k_6l_2w_3$ was somewhat slower than that of $K_6L_2W_3$. Peptoid $k_6l_2w_3$ exhibited very little dye leakage from bacterial outer-membrane mimicking PE/PG liposomes, as observed in $K_6L_2W_3$, indicating that the major target site of $K_6L_2W_3$ and $k_6l_2w_3$ may be not the cell membrane but the cytoplasm of bacteria. Trypsin treatment of $K_6L_2W_3$ completely abolished antimicrobial activities against Escherichia coli and Staphylococcus aureus. In contrast, the antimicrobial activity of $k_6l_2w_3$ was completely preserved after trypsin treatment. Taken together, our results suggested that antimicrobial peptoid $k_6l_2w_3$ can potentially serves as a promising therapeutic agent for the treatment of microbial infection.

Keywords

References

  1. Boman, H. G. Annu. Rev. Immunol. 1995, 13, 61. https://doi.org/10.1146/annurev.iy.13.040195.000425
  2. Zasloff, M. Nature 2002, 415, 389. https://doi.org/10.1038/415389a
  3. Selsted, M. E.; Ouellette, A. J. Nat. Immunol. 2005, 6, 551. https://doi.org/10.1038/ni1206
  4. Hancock, R. E.; Brown, K. L.; Mookherjee, N. Immunobiology 2006, 211, 315. https://doi.org/10.1016/j.imbio.2005.10.017
  5. Shai, Y. Biopolymers 2002, 66, 236. https://doi.org/10.1002/bip.10260
  6. Epand, R. M.; Vogel, H. J. Biochim. Biophys. Acta 1999, 1462, 11. https://doi.org/10.1016/S0005-2736(99)00198-4
  7. Chan, D. I.; Prenner, E. J.; Vogel, H. J. Biochim. Biophys. Acta 2006, 1758, 1184. https://doi.org/10.1016/j.bbamem.2006.04.006
  8. Schibli, D. J.; Epand, R. F.; Vogel, H. J.; Epand, R. M. Biochem. Cell Biol. 2002, 80, 667. https://doi.org/10.1139/o02-147
  9. Yang, S. T.; Shin, S. Y.; Lee, C. W.; Kim, Y. C.; Hahm, K. S.; Kim, J. I. FEBS Lett. 2003, 540, 229. https://doi.org/10.1016/S0014-5793(03)00266-7
  10. Yang, S. T.; Shin, S. Y.; Kim, Y. C.; Kim, Y.; Hahm, K. S.; Kim, J. I. Biochem. Biophys. Res. Commun. 2002, 296, 1044. https://doi.org/10.1016/S0006-291X(02)02048-X
  11. Selsted, M. E.; Novotny, M. J.; Morris, W. L.; Tang, Y. Q.; Smith, W.; Cullor, J. S. J. Biol. Chem. 1992, 267, 4292.
  12. Ryge, T. S.; Doisy, X.; Ifrah, D.; Olsen, J. E.; Hansen, P. R. J. Pept. Res. 2004, 64, 171. https://doi.org/10.1111/j.1399-3011.2004.00177.x
  13. Rozek, A.; Powers, J. P.; Friedrich, C. L.; Hancock, R. E. Biochemistry 2003, 42, 14130. https://doi.org/10.1021/bi035643g
  14. Park, K. H.; Nan, Y. H.; Park, Y.; Kim, J. I.; Park, I. S.; Hahm, K. S.; Kim, Y.; Shin, S. Y. Biochim. Biophys. Acta 2009, 1788, 1193. https://doi.org/10.1016/j.bbamem.2009.02.020
  15. Hamamoto, K.; Kida, Y.; Zhang, Y.; Shimizu, T.; Kuwano, K. Microbiol. Immunol. 2002, 46, 741. https://doi.org/10.1111/j.1348-0421.2002.tb02759.x
  16. Svenson, J.; Stensen, W.; Brandsdal, B. O.; Haug, B. E.; Monrad, J.; Svendsen, J. S. Biochemistry 2008, 47, 3777. https://doi.org/10.1021/bi7019904
  17. Meng, H.; Kumar, K. J. Am. Chem. Soc. 2007, 129,15615. https://doi.org/10.1021/ja075373f
  18. Porter, E. A.; Weisblum, B.; Gellman, S. H. J. Am. Chem. Soc. 2002, 124, 7324. https://doi.org/10.1021/ja0260871
  19. Wu, C. W.; Sanborn, T. J.; Zuckermann, R. N.; Barron, A. E. J. Am. Chem. Soc. 2001, 123, 2958. https://doi.org/10.1021/ja003153v
  20. Ng, S.; Goodson, B.; Ehrhardt, A.; Moos, W. H.; Siani, M.; Winter, J. Bioorg. Med. Chem. 1999, 7, 1781. https://doi.org/10.1016/S0968-0896(99)00132-7
  21. Wender, P. A.; Mitchell, D. J.; Pattabiraman, K.; Pelkey, E. T.; Steinman, L.; Rothbard, J. B. Proc. Natl. Acad. Sci. USA. 2000, 97, 13003. https://doi.org/10.1073/pnas.97.24.13003
  22. Goodman, M.; Bhumralkar, M.; Jefferson, E. A.; Kwak, J.; Locardi, E. Biopolymers 1998, 47, 127. https://doi.org/10.1002/(SICI)1097-0282(1998)47:2<127::AID-BIP2>3.0.CO;2-W
  23. Merrifield, R. B. J. Am. Chem. Soc.1963, 85, 2149. https://doi.org/10.1021/ja00897a025
  24. Fields, G. B.; Noble, R. L. Int. J. Pept. Protein Res. 1990, 35, 161. https://doi.org/10.1111/j.1399-3011.1990.tb00939.x
  25. Figliozzi, G. M.; Goldsmith, R.; Ng, S. C.; Banville, S. C.; Zuckermann, R. N. Methods Enzymol. 1996, 267, 437. https://doi.org/10.1016/S0076-6879(96)67027-X
  26. Zhu, W. L.; Lan, H.; Park, Y.; Yang, S. T.; Kim, J. I.; Park, I. S.; You, H. J.; Lee, J. S.; Park, Y. S.; Kim, Y.; Hahm, K. S.; Shin, S. Y. Biochemistry 2006, 45, 13007. https://doi.org/10.1021/bi060487+
  27. Zhu, W. L.; Song, Y. M.; Park, Y.; Park, K. H.; Yang, S. T.; Kim, J. I.; Park, I. S.; Hahm, K. S.; Shin, S. Y. Biochim Biophys Acta 2007, 1768, 1506. https://doi.org/10.1016/j.bbamem.2007.03.010
  28. Lee, J. U.; Park, K. H.; Lee, J. Y.; Kim, J.; Shin, S. Y.; Park, Y.; Hahm, K. S.; Kim, Y. Bull. Korean Chem. Soc. 2008, 26, 1190.
  29. Park, K.; Shin, S. Y.; Hahm, K. S.; Kim Y. Bull. Korean Chem. Soc. 2003, 24, 1478. https://doi.org/10.5012/bkcs.2003.24.10.1478
  30. Barlett, C. R. J. Biol. Chem. 1959, 234, 466.
  31. Hancock, R. E.; Scott, M. G. Proc. Natl. Acad. Sci. USA 2000, 97, 8856. https://doi.org/10.1073/pnas.97.16.8856
  32. Fazio, M. A.; Jouvensal, L.; Vovelle, F.; Bulet, P.; Miranda, M. T.; Daffre, S.; Miranda, A. Biopolymers 2007, 88, 386. https://doi.org/10.1002/bip.20660
  33. Solanas, C.; de la Torre B. G.; Fernández-Reyes, M.; Santiveri, C. M.; Jiménez, M. A.; Rivas, L.; Jiménez, A. I.; Andreu, D.; Cativiela, C. J. Med. Chem. 2009, 52, 664. https://doi.org/10.1021/jm800874t
  34. Latham, P. W. Nat. Biotechnol. 1999, 17, 755. https://doi.org/10.1038/11686
  35. Sato, A. K.; Viswanathan, M.; Kent, R. B.; Wood, C. R. Curr. Opin. Biotechnol. 2006, 17, 638. https://doi.org/10.1016/j.copbio.2006.10.002

Cited by

  1. Effects of Lys-linked Dimerization of an α-Helical Leu/Lys-rich Model Antimicrobial Peptide on Salt Resistance and LPS-neutralizing Activity vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.4055
  2. Analogues of Hybrid Antimicrobial Peptide, CAMA-P2, Designed with Improved Antimicrobial and Synergistic Activities vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2577
  3. Effect of capping groups at the N- and C-termini on the conformational preference of α,β-peptoids vol.10, pp.5, 2012, https://doi.org/10.1039/C1OB06386C
  4. Peptides and Peptidomimetics for Antimicrobial Drug Design vol.8, pp.3, 2015, https://doi.org/10.3390/ph8030366
  5. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs vol.22, pp.9, 2017, https://doi.org/10.3390/molecules22091430
  6. Cationic Polypeptoids with Optimized Molecular Characteristics toward Efficient Nonviral Gene Delivery vol.9, pp.28, 2017, https://doi.org/10.1021/acsami.7b06031
  7. Structure-Activity Relationship Study of Novel Peptoids That Mimic the Structure of Antimicrobial Peptides vol.59, pp.7, 2015, https://doi.org/10.1128/AAC.00237-15
  8. Peptoids successfully inhibit the growth of gram negative E. coli causing substantial membrane damage vol.7, pp.1, 2017, https://doi.org/10.1038/srep42332
  9. Studies on acid stability and solid-phase block synthesis of peptide–peptoid hybrids: ligands for formyl peptide receptors pp.1438-2199, 2019, https://doi.org/10.1007/s00726-018-2656-x
  10. Bioinspired Amphiphilic Peptide Dendrimers as Specific and Effective Compounds against Drug Resistant Clinical Isolates of E. coli vol.29, pp.11, 2010, https://doi.org/10.1021/acs.bioconjchem.8b00544
  11. Synthesis of Peptoids Containing Multiple N htrp and N trp Residues: A Comparative Study of Resin, Cleavage Conditions and Submonomer Protection vol.8, pp.None, 2010, https://doi.org/10.3389/fchem.2020.00370
  12. Purification of animal immunoglobulin G (IGG) using peptoid affinity ligands vol.36, pp.4, 2010, https://doi.org/10.1002/btpr.2994
  13. Alternating Cationic‐Hydrophobic Peptide/Peptoid Hybrids: Influence of Hydrophobicity on Antibacterial Activity and Cell Selectivity vol.15, pp.24, 2010, https://doi.org/10.1002/cmdc.202000526
  14. Helical Antimicrobial Peptide Foldamers Containing Non‐proteinogenic Amino Acids vol.16, pp.8, 2021, https://doi.org/10.1002/cmdc.202000940