DOI QR코드

DOI QR Code

Preparation of Silver Nanocolloids Using Silver Alkylcarbamate Complex in Organic Medium with PVP Stabilizer

  • Park, Hyung-Seok (Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science) ;
  • Park, Heon-Su (Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science) ;
  • Gong, Myoung-Seon (Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science)
  • Received : 2010.06.21
  • Accepted : 2010.07.26
  • Published : 2010.09.20

Abstract

We present a method for chemically reducing silver alkylcarbamate complex with hydrazine to synthesize silver nanocolloids in an organic solvent using polyvinylpyrrolidone (PVP) as the stabilizer. To determine the optimal conditions for preparing stable silver colloids of controlled size and shape, the silver 2-ethylhexylcarbamate (Ag-EHCB) complex, PVP, hydrazine, and 2-propanol solvent concentrations in the reaction mixture were varied. The initial colloid has a mean particle diameter of 5-80 nm, and it exhibits an absorption band with various shapes in the UV region with a maximum near 420 nm. UV-vis spectroscopy, TEM, and X-ray diffraction techniques were used to investigate the formation and growth process of the metallic silver nanocolloids.

Keywords

References

  1. Lee, P. C.; Miesel, D. J. Phys. Chem. 1982, 86, 3391. https://doi.org/10.1021/j100214a025
  2. Creigton, J.; Blatchford, C.; Albrecht, M. J. Chem. Soc. Faraday Trans. 1979, 75, 790. https://doi.org/10.1039/f29797500790
  3. Shirtcliffe, N.; Nickel, U.; Schneider, S. J. Colloid Interface Sci. 1999, 211, 122. https://doi.org/10.1006/jcis.1998.5980
  4. Toshima, N.; Harada, M.; Yonezawa, T.; Kushihashi, K.; Asakura, K. J. Phys. Chem. 1991, 95, 7448. https://doi.org/10.1021/j100172a061
  5. Pastoriza-Santos, I.; Liz-Marzan, L. M. Langmuir 1999, 15, 948-951. https://doi.org/10.1021/la980984u
  6. Rodriguez-Gattorno, G.; Diaz, D.; Rendon, L.; Hernandez-Segura, G. O. J. Phys. Chem. B 2002, 106, 2482. https://doi.org/10.1021/jp012670c
  7. Vasan, H. N.; Rao, C. N. R. J. Mater. Chem. 1995, 5, 1755. https://doi.org/10.1039/jm9950501755
  8. Ayyappan, S.; Srinivasan Gopalan, R.; Subbana, G. N.; Rao, C. N. R. J. Mater. Res. 1997, 12, 398. https://doi.org/10.1557/JMR.1997.0057
  9. Steiner, E. C.; Gilbert, J. M. J. Am. Chem. Soc. 1965, 87, 382. https://doi.org/10.1021/ja01080a044
  10. Hong, H. K.; Park, C. K.; Gong, M. S. Bull. Korean Chem. Soc. 2010, 31, 1252. https://doi.org/10.5012/bkcs.2010.31.5.1252
  11. Nie, S.; Emory, S. R. Science 1997, 275, 1102. https://doi.org/10.1126/science.275.5303.1102
  12. Nickel, U.; Castell, A.; Pöppl, K.; Shirtcliffe, N. Langmuir 2000, 16, 9087. https://doi.org/10.1021/la000536y
  13. Evanoff, D. D.; Chumanov, G., Jr. J. Phys. Chem. B 2004, 108, 13948. https://doi.org/10.1021/jp047565s
  14. Van Hyning, D. L.; Zukoski, C. F. Langmuir 1998, 14, 7034. https://doi.org/10.1021/la980325h
  15. Cavicchioli, M.; Varanda, L. C.; Massabni, A. C.; Melnikov, P. Mater. Lett. 2005, 59, 3585. https://doi.org/10.1016/j.matlet.2005.07.001
  16. Yang, N.; Aoki, K. Electrochim. Acta 2005, 50, 4868. https://doi.org/10.1016/j.electacta.2005.02.071
  17. Kashiwagi, Y.; Yamamoto, M.; Nakamoto, M. J. Colloid Interface Sci. 2006, 300, 169. https://doi.org/10.1016/j.jcis.2006.03.041
  18. Abe, K.; Hanada, T.; Yoshida, Y.; Tanigaki, N.; Takiguchi, H.; Nagasawa, H.; Nakamoto, M.; Yamaguchi, T.; Yase, K. Thin Solid Film 1998, 327, 524. https://doi.org/10.1016/S0040-6090(98)00702-0
  19. Yamamoto, M.; Nakamoto, M. J. Mater. Chem. 2003, 13, 2064. https://doi.org/10.1039/b307092a
  20. Kashiwagi, Y.; Yamamoto, M.; Nakamoto, M. J. Colloid Interface Sci. 2006, 300, 169. https://doi.org/10.1016/j.jcis.2006.03.041
  21. Szymanska, I.; Piszczek, P.; Szczesny, R.; Szłyk, E. Polyhedron 2007, 26, 2440. https://doi.org/10.1016/j.poly.2006.12.028
  22. Liu, X.; Luc, S.; Zhang, J.; Cao, W. Thermochimica Acta 2006, 440, 1. https://doi.org/10.1016/j.tca.2005.08.030
  23. Monti, O. L. A.; Fourkas, J. T.; Nesbitt, D. J. J. Phys. Chem. B 2004, 108, 1604. https://doi.org/10.1021/jp030492c
  24. Singh, N.; Khanna, P. K. Mater. Chem. Phys. 2007, 104, 367. https://doi.org/10.1016/j.matchemphys.2007.03.026
  25. Park, M. S.; Lim, T. H.; Jeon, Y. M.; Kim, J. G.; Joo, S. W.; Gong, M. S. Macromol. Res. 2008, 16, 308. https://doi.org/10.1007/BF03218522
  26. Park, M. S.; Lim, T. H.; Jeon, Y. M.; Kim, J. G.; Joo, S. W.; Gong, M. S. Sens. Actuators B 2008, 133, 166. https://doi.org/10.1016/j.snb.2008.02.008
  27. Hong, H. K.; Gong, M. S.; Park, C. K. Bull. Korean Chem. Soc. 2009, 30, 2669. https://doi.org/10.5012/bkcs.2009.30.11.2669
  28. Park, H. S.; Park, H. S.; Gong, M. S. Polymer(Korea) 2010, 34, 144.
  29. Park, H. S.; Park, H. S.; Gong, M. S. Macromol. Res. 2010, 18, 897. https://doi.org/10.1007/s13233-010-0913-2
  30. Grodzicki, A.; Lakomska, I.; Piszczek, P.; Szymanska, I.; Szlyk, E. Coord. Chem. Rev. 2005, 249, 2232. https://doi.org/10.1016/j.ccr.2005.05.026
  31. Park, M. S.; Lim, T. H.; Jeon, Y. M.; Kim, J. G.; Joo, S. W.; Gong, M. S. J. Colloid Interface Sci. 2008, 321, 60. https://doi.org/10.1016/j.jcis.2008.01.053
  32. Jeon, Y. M.; Cho, H. N.; Gong, M. S. Macromol. Res. 2009, 17, 2. https://doi.org/10.1007/BF03218592
  33. Lim, T. H.; Jeon, Y. M.; Kim, Gong, M. S. Polymer (Korea) 2009, 33, 33.
  34. Loginova, T. P.; Bronstein, L. M.; Mirzoeva, E. S.; Ezernitskaya, M. G.; Lokshin, B. V.; Genin, Y. V.; Valetsky, P. M. Polym. Sci. 1993, 35, 21.
  35. Hirai, H.; Chawanya, H.; Toshima, N. Reactive Polym. 1985, 3, 127.
  36. Fendler, J. H. Nanoparticles and Nanostructured Films. Preparation, Characterization and Applications; Wiley: Weinheim, VCH, 1998.
  37. Hirai, H.; Nakao, Y.; Toshima, N. J. Macromol. Sci. Chem. 1979, A13, 727.
  38. Mayer, A. B. R.; Mark, J. E. J. Polym. Sci. A: Polym. Chem. 1998, 35, 197. https://doi.org/10.1002/(SICI)1099-0518(19970130)35:2<197::AID-POLA1>3.0.CO;2-Q
  39. Mayer, A. B. R. Mater. Sci. Eng, C: Biomimetic Mater., Sensors and Systems 1998, 6, 155. https://doi.org/10.1016/S0928-4931(98)00049-6
  40. Maillard, M.; Giorgio, S.; Pileni, M. P. Adv. Mater. 2002, 14, 1084. https://doi.org/10.1002/1521-4095(20020805)14:15<1084::AID-ADMA1084>3.0.CO;2-L

Cited by

  1. Positively Charged Silver Nanoparticles Threaded on Carbon Nanotube for the Efficient Delivery of Negatively Charged Biomolecules vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3581
  2. Facile Preparation of Nanosilver-decorated MWNTs Using Silver Carbamate Complex and Their Polymer Composites vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.483
  3. Silver loading on poly(ethylene terephthalate) fabrics using silver carbamate via thermal reduction vol.23, pp.6, 2015, https://doi.org/10.1007/s13233-015-3069-2
  4. Investigation of the antimicrobial and wound healing properties of silver nanoparticle-loaded cotton prepared using silver carbamate pp.1746-7748, 2017, https://doi.org/10.1177/0040517516688630
  5. Preparation and Stabilization of Ag Nanoparticles in 1-Amino-4-methylpiperazine vol.32, pp.1, 2011, https://doi.org/10.5012/bkcs.2011.32.1.273
  6. Preparation of Highly Stabilized Silver Nanopowders by the Thermal Reduction and Their Properties vol.33, pp.12, 2010, https://doi.org/10.5012/bkcs.2012.33.12.3987
  7. Facile Preparation of Silver Nanoparticles and Application to Silver Coating Using Latent Reductant from a Silver Carbamate Complex vol.34, pp.2, 2010, https://doi.org/10.5012/bkcs.2013.34.2.505
  8. Surface Modification of Polyester Fibers by Thermal Reduction with Silver Carbamate Complexes vol.17, pp.8, 2010, https://doi.org/10.1007/s12221-016-5786-3