DOI QR코드

DOI QR Code

Regulation of Acid Contents in Kiwifruit Irradiated by Various Wavelength of Light Emitting Diode during Postharvest Storage

다양한 파장의 LED 조사를 통한 참다래 과실의 산 함량 조절

  • Baek, Kwang-Hyun (School of Biotechnology, Yeungnam University) ;
  • Jang, Myung-Hwan (Department of Horticulture, Yeungnam University) ;
  • Kwack, Yong-Bum (Namhae Sub-Station, Nat'l Inst. of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Se-Weon (Agricultural Microbiology Div., Nat'l Academy of Agricultural Sci., Rural Development Administration) ;
  • Yun, Hae-Keun (Department of Horticulture, Yeungnam University)
  • 백광현 (영남대학교 생명공학부) ;
  • 장명환 (자연자원대학 원예학과) ;
  • 곽용범 (농촌진흥청 국립원예특작과학원 남해출장소) ;
  • 이세원 (국립농업과학원 농업생물부 농업미생물팀) ;
  • 윤해근 (자연자원대학 원예학과)
  • Received : 2010.05.10
  • Accepted : 2010.06.21
  • Published : 2010.06.30

Abstract

The physiological roles of various wavelength of light emitting diode (LED) on ‘Hayward’ kiwifruit experiencing after-ripening were investigated. Various wavelengths from LED light source were irradiated on kiwifruits kept in plastic bags or under open air at $25^{\circ}C$. During two weeks of storage, firmness of Hayward kiwifruits was decreased by $25^{\circ}C$ treatment than by $4^{\circ}C$ treatment. In the $25^{\circ}C$ storage condition, the firmness of kiwifruits was decreased by the treatment of 380 nm UV and 470nm white LED light source. Sweetness of kiwifruits treated with 380 nm UV LED and dark condition at $25^{\circ}C$ increased higher than $15^{\circ}$Brix. The acidity of kiwifruits under open air was decreased 52% by incubating at $25^{\circ}C$ with 660 nm red LED treatment. The acidity of kiwifruits in plastic bags was decreased 52.6, 55.6, 52.8% by the treatment of 440 nm blue, 470 nm white and 660 nm red LED light source, respectively, compared to that of kiwifruits incubated in darkness at $25^{\circ}C$. Decreased acidity irradiated by 660 nm red LED light source can be applied for regulating periods of the kiwifruit after-ripening process. LED light sources emit very narrow wavelength with a power-saving mode, therefore, the usage of these LED light source for regulating the after-ripening process can be classified as a clean biotechnology producing safe and environment-friendly kiwifruits.

참다래(‘헤이워드’) 과실을 저온 및 상온 저장 중에, 여러 다른 파장의 light emitting diode (LED) 광원을 조사한 후 과실의 경도, 당도 및 산함량의 변화를 분석하였다. 과실 경도는 $4^{\circ}C$보다 $25^{\circ}C$에서 크게 감소하였고, 1주 동안 LED 파장을 조사했을 때, 440 nm와 660 nm의 LED 광원을 처리한 참다래가 암실처리 보다 경도가 높게 유지되었고 380 nm UV등과 470 nm 백색 LED를 처리한 과실은 암실의 조건에 비하여 경도가 낮게 조사되었다. 밀봉을 한 참다래는 공기 중에 개방된 참다래보다 모든 처리구에서 경도가 더 높았다. 당도는 $25^{\circ}C$에서 공기 중에 개방한 경우, 470 nm 백색 LED 처리구에서는 낮게 나타났으나 암조건과 380nm UV등 처리에서는 $15^{\circ}$Brix 이상을 나타내었다. 참다래 과실의 산함량은 660 nm 적색 LED 처리구에서 52% 감소하였다. 밀봉된 참다래에서 440 nm 청색 LED, 470 nm 백색 LED, 660 nm 적색 LED 광원을 처리하였을 때, 암실에 놓여진 참다래보다 산함량이 각각 52.6, 55.6 및 52.8% 감소하였다. 참다래에 대한 다양한 파장의 LED 조사효과 중에서, 산함량의 감소는 향후 참다래 과실의 수확 후 후숙기간을 조절하는데 활용될 수 있을 것이다. LED 광원은 정확하고 매우 좁은 영역의 파장을 적은 용량의 전력 소모량으로 구현하기 때문에 대표적인 청정 기술로 분류되며, 이러한 LED 광원을 이용한 참다래 과실의 산도 조절은 기존의 에틸렌 등의 화학물 처리보다 안전한 친환경 과실을 생산할 수 있는 청정기술이라 평가된다.

Keywords

References

  1. Ferguson, A. R, and Bollard, E. G., "Domestication of Kiwifruit," in Warrington, I. J., and Weston, G. C, Eds., Kiwifruit: Science and management, Ray Richards Publication, Auckland, New Zealand, 165-246 (1990).
  2. Kwack, Y. B., and Park, Y. S., "Kiwifruit (Actinidia deliciosa L.)," in Lee, J. M., Choi, G. C, and Janick, J., Eds., Horticulture in Korea, Kor. Soc. Hort. Sci., Seoul, Korea, 244-249 (2006).
  3. Yamanaka, H., Kuno, M., Shiomi, K., and Kikuchi. T., "Determination of Oxalate in Foods by Enzymatic Analysis," J. Food Hyg. Soc. Japan, 24(5), 454-458 (1983). https://doi.org/10.3358/shokueishi.24.454
  4. Perera, C., Hallet, I., Nguyen, T., and Charles, J., "Calcium Oxalate Crystals: The Irritant Factor in Kiwifruit," J. Food Sct., 55(4), 1066-1069 (1990). https://doi.org/10.1111/j.1365-2621.1990.tb01599.x
  5. Park, Y. S., and Kim, S. R. "Ripening Eftect of Kiwifruit Influenced by Ethylene Treatment," Kor. J. Hort. Sci. Tech., 20(S1), 91 (2002).
  6. Redgwell, R., Melton, L., and Brasch, D., "Cell Wall Dissolution in Ripening Kiwifruit (Actinidia deliclosa) Solubilization of the Pecticpolymers," Plant Physiol, 98(1), 71-81 (1992). https://doi.org/10.1104/pp.98.1.71
  7. Koh, Y., Lee, J., Hur, J., and Jung, J., "Incidences and Causal Agents of Postharvest Fruit Rots in Kiwifruits in Korea," Res. Plant Dis. 9(4), 196-200 (2003). https://doi.org/10.5423/RPD.2003.9.4.196
  8. Lee, C., Kim, S., Kang, S., Park, B., and Han, D., "Post-storage Softening and Physiological of 'Hayward' Kiwifruit Stored under Low Temperature and Controlled Atmosphere," J. Kor. Soc. Hort. Sci., 42(1), 87-90 (2001).
  9. Park, Y., and Kim, B., "Changes in Firmness, Fruit Composition, Respiration and Ethylene Production of Kiwifruit during Storage," J. Kor. Soc. Hort. Sci., 36(1), 67-73 (1995).
  10. MacRae, E., Lallu, N., Searle, A., and Bowen, J., "Changes in the Softening and Composition of Kiwifruit (Actinidia deliciosa) Affected by Maturity at Harvest and Postharvest Treatments." J. Sci, Food Agr., 49(4), 413-430 (1989). https://doi.org/10.1002/jsfa.2740490404
  11. Kim, K., Kwon, J., and Lee, J., "Ethylene and Temperature Effects on Softening and White Core Inclusions of Stored in Air or Controlled Atmospheres," J. Amer. Soc. Hort. Sci., 111(1), 149-153 (2007).
  12. Kim, K., Sohn, C., Lee, S., Lee, S., Lee, J., Kwon, J., and Yoo, H., "Quality of 'Hayward' Kiwifruit by Low-dose Gamma Irradiation," J. East Asian Soc. Dietary Life, 18(1), 49-57 (2008).
  13. Beever, D., and Hopkirk, G., "Fruit Development and Fruit Physiology," in Warrington, I. J., and Weston, G. C., Eds., Kiwifruit: Science and Management, Ray Richards Publication, Auckland, New Zealand, 165-246 (1990).
  14. Benge, J., De Silva, H., Banks, N., and Jeffery, P., "Empirical Modelling of Postharvest Changes in the Firmness of Kiwifruit," Postharvest BioI. Technol., 19(3), 211-220 (2000). https://doi.org/10.1016/S0925-5214(00)00091-0
  15. Jackson, P., and Harker, F., "Changes in Firmness of the Outer Pericarp, Inner Pericarp, and Core of Actinidia Species during Ripening," NZJ. Crop Hort. Sci., 25(2), 185-189 (1997). https://doi.org/10.1080/01140671.1997.9514005
  16. Stec, M., Hodgson, J., MacRae, E., and Triggs, C., "Role of Fruit Firmness in the Sensory Evaluation of Kiwifruit (Actinidia deliciosa cv. Hayward)," J. Sci. Food Agr., 47(4), 417-433 (1989). https://doi.org/10.1002/jsfa.2740470404
  17. Zheludev, N., "The Life and Times of the LED - A 100-year History," Nature Photonics, 1(4), 189-192 (2007). https://doi.org/10.1038/nphoton.2007.34
  18. Goins, G., Yorio, N., Sanwo, M., and Brown, C., "Photomorphogenesis, Photosynthesis, and Seed Yield of Wheat Plants Grown under Red Light-emitting Diodes (LEDs) with and without Supplemental Blue Lighting," J. Exp. Bot., 48(7), 1407 (1997). https://doi.org/10.1093/jxb/48.7.1407
  19. Park, K., Shin, Y., and Lee., Y., "Studies on the Modeling of Controlled Environment in Leaf Vegetable Crops. II. Effects of Various Sources on the Grovvth," J. Bio. Fac. Env., 1(2), 135-141 (1992).
  20. Shotipruk, A., Kaufman, P., and Wang, H., "Conceptual of LED-based Hydroponic Photobioreactor for High-density Plant Cultivation," Biotechnol. Prog., 15(6),1058-1064 (1999). https://doi.org/10.1021/bp990114i
  21. Arase, S., Fujita, K., Uehara, T., Honda, Y., and Isota, J., "Light Enhanced Resistance to Magnaporthe grisea Infection in the Rice Sekiguchi Lesion Mutant," J. Phytopathol., 148(4), 197-203 (2000). https://doi.org/10.1046/j.1439-0434.2000.00501.x
  22. Cohnstaedt, L., Gillen, J., and Munstermann, L., "Light-emitting Diode Technology Improves Insect Trapping," J. Amer. Mosquito Cont. Asso., 24(2), 331-334 (2008). https://doi.org/10.2987/5619.1
  23. Islam, S., Honda, Y., and Arase, S., " "Light-induced Resistance of Broad Bean against Botrytis cinerea," J. Phytopathol., 146(10), 479-485 (1998). https://doi.org/10.1111/j.1439-0434.1998.tb04609.x
  24. Islam, S., Honda, Y., and Arase, S., "Some Characteristics of Red Light Induced Substance(s) against Botrytis cinerea Produced in Broad Bean Leaflets," J. Phytopathol. 147(2), 65-70 (1999). https://doi.org/10.1111/j.1439-0434.1999.tb03809.x
  25. Khanam, N., Ueno, M., Kihara, J., Honda, Y., and Arase, S., "Suppression of Red Light-induced Resistance in Broad Beans to Botlytis cinerea by Salicylic Acid," Physiol. Mol. Plant Pathol., 66(1-2), 20-29 (2005). https://doi.org/10.1016/j.pmpp.2005.03.006
  26. Rahman, M., Arase, S., and Honda, Y., "Red light-induced Resistance in Broad Bean (Vicia faba L.) to Leaf Spot Disease Caused by Alternaria tenuissima," J. Phytopathol., 151(2), 86-91 (2003). https://doi.org/10.1046/j.1439-0434.2003.00685.x
  27. Barta, D., Tibbitts, T., Bula, R., and Morrow, R., "Evaluation of Light Emitting Diode Characteristics tor a Space-based Plant Irradiation Source," Adv. Space Res., 12(5), 141-149 (1992). https://doi.org/10.1016/0273-1177(92)90020-X
  28. Bula, R., Tibbitts, T., Morrow, R., and Dinauer, W., "Commercial Involvement in the Development of Space-based Plant Growing Technology," Adv. Space Res., 12(5), 5-10 (1992). https://doi.org/10.1016/0273-1177(92)90002-F
  29. Moreno, I., Avendano-Alejo, M., and Tzonchev, R., "Designing Light-emitting Diode Arrays for Uniform Near-field Irradiance," Appl. Optics, 45(10), 2265-2272 (2006). https://doi.org/10.1364/AO.45.002265
  30. Tamulaitis, G., Duchovskis, P., Bliznikas, Z., Breive, K., Ulinskaite, L., Brazaityte, A., Novickovas, A., and Zukauskas, A., "High-power Light-emitting Diode Based Facility for Plant Cultivation," J. Phys. D: Appl. Phys., 38(17), 3182-3187 (2005). https://doi.org/10.1088/0022-3727/38/17/S20
  31. Okamoto, K., Yanagi, T., Takita, S., Tanaka, M., Higuchi, T., Uchida, Y., and Watanabe, H., "Development of Plant Growth Apparatus using Blue and Red LED as Artificial Light Source," ActaHortic., 440, 111-116 (1996).