DOI QR코드

DOI QR Code

Production of a Phytotoxic Compound, 3-Phenylpropionic Acid by a Bacterial Endophyte, Arthrobacter humicola YC6002 Isolated from the Root of Zoysia japonica

  • Chung, Eu-Jin (Department of Research & Development, JGreen Inc.) ;
  • Park, Joo-Hwang (Division of Applied Life Science (BK 21), PMBBRC, Gyeongsang National University) ;
  • Park, Tae-Soon (Division of Applied Life Science (BK 21), PMBBRC, Gyeongsang National University) ;
  • Ahn, Jong-Woong (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Chung, Young-Ryun (Department of Research & Development, JGreen Inc.)
  • Received : 2010.03.02
  • Accepted : 2010.07.12
  • Published : 2010.09.01

Abstract

An endophytic bacterial strain, Arthrobacter humicola YC6002, was isolated from a surface sterilized root of Korean turf grass (Zoysia japonica) collected from Jinju, Korea. This strain showed inhibitory effect on germination and shoot growth of radish. The inhibition of germination and shoot growth of radish seeds varied depending on the age of culture and the temperature at which it was incubated. The culture filtrate of 1/10-strength Tryptic Soy Broth medium, incubated for 48 hours at $30^{\circ}C$, showed the highest inhibitory effect on radish seed germination and shoot growth (92% inhibition as compared to control). The active compound with seed germination and shoot growth inhibition was purified and identified as 3-phenylpropionic acid. The purified compound had 53% and 93% inhibitory effect on seed germination and shoot growth of radish for 500 and 1000 ppm solutions, respectively.

Keywords

References

  1. Andreote, F. D., de Araujo, W. L., de Azevedo, J. L., van Elsas, J. D., da Rocha, U. N. and van Overbeek, L. S. 2009. Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, Pseudomonas putida P9, and its effect on associated bacterial communities. Appl. Environ. Microbiol. 75:3396-3406. https://doi.org/10.1128/AEM.00491-09
  2. Aravind, R., Kumar, A., Eapen, S. J. and Ramana, K. V. 2009. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett. Appl. Microbiol. 48:58-64. https://doi.org/10.1111/j.1472-765X.2008.02486.x
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1995. Current protocols in molecular biology, New York: Wiley.
  4. Azevedo, J. L., Maccheroni, J. Jr., Pereira, O. and Ara, W. L. 2000. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electr. J. Biotech. 3:40-65.
  5. Beck, H. C., Hansen, A. M. and Lauritsen, F. R. 2003. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa. FEMS Microbiol. Lett. 220:67-73. https://doi.org/10.1016/S0378-1097(03)00054-5
  6. Bender, C. L., Alarcon-Chaidez, F. and Gross, D. C. 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63:266-292.
  7. Brooks, D. S., Gonzalez, C. F., Appel, D. N. and Filer, T. H. 1994. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol. Control 4:373-381. https://doi.org/10.1006/bcon.1994.1047
  8. Barrows-Broaddus, J., Dwinell, L. D. and Kerr, T. J. 1985. Evaluation of Arhtrobacter sp. for biological control of the pitch canker fungus (Fusarium moniliforme var. subglutinans) on slash pines. Can. J. Microbiol. 31:888-892. https://doi.org/10.1139/m85-166
  9. Carvalho, D. D. C., Oliveira1, D. F., Correa, R. S. B., Campos, V. P., Guimaraes, R. M. and Coimbra, J. L. 2007. Rhizobacteria able to produce phytotoxic metabolites. Braz. J. Microbiol. 38:759-765. https://doi.org/10.1590/S1517-83822007000400032
  10. Casellas, M., Grifoll, M., Ayona, J. M. and Solanasi, A. M. 1997. New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101. Appl. Environ. Microbiol. 63:819-826.
  11. Chamkha, M., Patel, B. K. C., Garcia, J and Labat, M. 2001. Isolation of Clostridium bifermentans from oil mill wastewaters converting cinnamic acid to 3-phenylpro pionic acid and emendation of the species. Anaerobe 7:189-197. https://doi.org/10.1006/anae.2001.0382
  12. Chung, B. S., Aslam, Z., Kim, S. W., Kim, G. G., Kang, H. S., Ahn, J. W. and Chung, Y. R. 2008. A bacterial endophyte, Pseudomonas brassicacearum YC5480 isolated from the root of Artemisia sp. producing antifungal and phytotoxic compounds. Plant Pathol. J. 24:461-468. https://doi.org/10.5423/PPJ.2008.24.4.461
  13. Cremin, J. D. Jr., Drackley, J. K., Grum, D. E., Hansen, L. R. and Fahey, G. C. Jr. 1994. Effects of reduced phenolic acids on metabolism of propionate and palmitate in bovine liver tissue in vitro. J. Dairy Sci. 77:3608-3617. https://doi.org/10.3168/jds.S0022-0302(94)77305-7
  14. DellaGreca, M., Previtera, L., Purcaro, R. and Zarrelli, A. 2009. Phytotoxic aromatic constituents of Oxalis pescaprae. Chem. Biodivers. 6:459-465. https://doi.org/10.1002/cbdv.200800179
  15. Duijff, B. J., Gianinazzi-Pearsonand, V. and Lemanceau, P. 1997. Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New. Phytol. 135:325-334. https://doi.org/10.1046/j.1469-8137.1997.00646.x
  16. Edmund, S., Maria, K. and Krystyna, K. 1971. Production of inhibitors of auxin and gibberellin induced growth of plants by Arthrobacter pascens. Acta. Microbiol. Pol. 3:85-87.
  17. Elson, M. K., Schisler, D. A. and Bothast, R. J. 1997. Selection of microoraganisms for biological control of silver scurf (Helminthosporium solani) of potato tubers. Plant Dis. 81:647-652. https://doi.org/10.1094/PDIS.1997.81.6.647
  18. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  19. Ferreira, M. I. M., Marchesi, J. R. and Janssen, D. B. 2008. Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl. Microbiol. Biotechnol. 78:709-717. https://doi.org/10.1007/s00253-008-1343-3
  20. Goodfellow, M. and O'Donell, A. G. 1994. Chemical methods in prokaryotic systems. John Willey & Sons, New York, N. Y., 575 pp.
  21. Guido, F., Roger, A. H., Kathrya, A. B., Gagy, E. P., Georges, W. and Matthew, D. C. 1996. Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsi sp. nov. and Arthrobacter woluwensis sp. nov. J. Clin. Microbiol. 34:2356-2363.
  22. Hahlbrock, K. and Scheel, D. 1989. Physiology and molecular biology of phenyl prorapanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:347-369. https://doi.org/10.1146/annurev.pp.40.060189.002023
  23. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
  24. Jing, Q. Y. and Yoshihisa, M. 1994. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J. Chem. Ecol. 20:21-31. https://doi.org/10.1007/BF02065988
  25. Kageyama, A., Morisaki, K., O mura, S. and Takahash, Y. 2008. Arthrobacter oryzae sp. nov. and Arthrobacter humicola sp. nov.. Int. J. Syst. Evol. Microbiol. 58:53-56. https://doi.org/10.1099/ijs.0.64875-0
  26. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge: Cambridge University Press.
  27. Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19:161-208.
  28. Lane, D. J. 1991. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115-175. Edited by E. Stackebrandt & M. Goodfellow. New York: Wiley.
  29. Lanyi, B. 1987. Classical and rapid identification methods for medically important bacteria. Methods Microbiol. 19:1-67.
  30. Lee, J. S., Lee, K. C., Pyun, Y. R. and Bae, K. S. 2003. Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int. J. Syst. Evol. Microbiol. 53:1277-1280. https://doi.org/10.1099/ijs.0.02492-0
  31. Lee, S. O., Choi, G. J., Choi, Y. H., Jang, K. S., Park, D. J., Kim, C. J. and Kim, J. C. 2008. Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J. Microbiol. Biotechnol. 18:1741-1746.
  32. Liu, C. H., Chen, X., Liu, T. T., Lian, B., Gu, Y., Caer, V., Xue, Y. R. and Wang, B. T. 2007. Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components. Appl. Microbiol. Biotechnol. 76:459-466. https://doi.org/10.1007/s00253-007-1010-0
  33. Ludmila, K., Peter, S., Eva, D., Cathrin, S., Ivo, S., Jiri, N., Zbynek, Z. and Miroslav, N. 2004. Arthrobacter nitroguajacolicus sp. nov., a novel 4-nitroguaiacol-degrading actinobacterium. Int. J. Syst. Evol. Microbiol. 54:773-777. https://doi.org/10.1099/ijs.0.02923-0
  34. Mao, S., Lee, S. J., Hwangbo, H., Kim, Y. W., Park, K. H., Cha, G. S., Park, R. D. and Kim, K. Y. 2006. Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr. Microbiol. 53:358-364. https://doi.org/10.1007/s00284-005-0333-2
  35. Michaud, M. and Martinez, C. 2002. Selection of antagonist microorganisms against Helminthosporium solani, causal agent of potato silver scurf. Plant Dis. 86:717-720. https://doi.org/10.1094/PDIS.2002.86.7.717
  36. Moss, C. W., Lambert, M. A. and Goldsmith, D. J. 1970. Production of hydrocinnamic acid by Clostridia. Appl. Microbiol. 19:375-378.
  37. Miller, C. M., Miller, R. V., Garton-Kenny, D., Redgrave, B., Sears, J., Condron, M. M., Teplow, D. B. and Strobel, G. A. 1998. Ecomycins, unique antimycotics from Pseudomonas viridiflava. J. Appl. Microbiol. 84:937-944. https://doi.org/10.1046/j.1365-2672.1998.00415.x
  38. Minnikin, D. E., O'Donell, A. G., Goodfellow, M. and Alderson, G. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2:233-241. https://doi.org/10.1016/0167-7012(84)90018-6
  39. Mundt, J. O. and Hinkle, N. F. 1976. Bacteria within ovules and seeds. Appl. Environ. Microbiol. 32:694-698.
  40. Narayana, K. J., Prabhakar, P., Vijayalakshmi, M., Venkateswarlu, Y. and Krishna, P. S. 2007. Biological acitivity of phenylpropionic acid isolated from a terrestrial Streptomycetes. Pol. J. Microbiol. 56:191-197.
  41. Patel, A., Deshattiwar, M., Chaudhari, B. and Chincholkar, S., 2009. Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp.. Bioresour. Technol. 100:368-373. https://doi.org/10.1016/j.biortech.2008.05.008
  42. Pusey, P. L. 1997. Crab apple blossoms as a model for research on biological control of fire blight. Phytopathology 87:1096-1102. https://doi.org/10.1094/PHYTO.1997.87.11.1096
  43. Ramasamy, K., Lim, S. M., Bakar, H. A., Ismail, N., Ismail, M. S. Ali, M. F., Weber, J. F. and Cole, A. L. J. 2009. Antimicrobial and cytotoxic activities of malaysian endophytes. Phytother. Res. 24:640-643.
  44. Rosa, M., Peter, S., Cathrin, S. and Anne-Monique, G. 2004. Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int. J. Syst. Evol. Microbiol. 54:2067-2072. https://doi.org/10.1099/ijs.0.63124-0
  45. Rosenblueth, M. and Martinez-Romero, E. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact. 19:827-837. https://doi.org/10.1094/MPMI-19-0827
  46. Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J. and Dowling, D. N. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278:1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x
  47. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Nat. Acad. Sci. USA. 100:4927-4935. https://doi.org/10.1073/pnas.0730845100
  48. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  49. Siciliano, S. D., Fortin, N., Mihoc, A., Wisse, G., Labelle, S., Beaumier, D., Ouellette, D., Roy, R., Whyte, L. G., Bankes, M. K., Schwab, P., Lee, K. and Greer, C. W. 2001. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol. 67:2469-2475. https://doi.org/10.1128/AEM.67.6.2469-2475.2001
  50. Singh, P. P., Shin, Y. C., Park, C. S. and Chung, Y. R. 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92-99. https://doi.org/10.1094/PHYTO.1999.89.1.92
  51. Smibert, R. M. and Krieg, N. R. 1994. Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607-654. Edited by P. Gerhardt. Washington D.C. Amer. Soc. Microbiol.
  52. Strobel, G. and Daisy, B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 67:491-502. https://doi.org/10.1128/MMBR.67.4.491-502.2003
  53. Strobel, G., Daisy, B., Castillo, U. and Harper, J. 2004. Natural products from endophytic microorganisms. J. Nat. Prod. 67:257-268. https://doi.org/10.1021/np030397v
  54. Sziderics, A. H., Rasche, F., Trognitz, F., Sessitsch, A. and Wilhelm, E. 2007. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsium annuum L.). Can. J. Microbiol. 53:1195-1202. https://doi.org/10.1139/W07-082
  55. Tamaoka, J. and Komagata, K. (1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125-128. https://doi.org/10.1111/j.1574-6968.1984.tb01388.x
  56. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  57. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. https://doi.org/10.1093/nar/25.24.4876
  58. Vurro, M., Boari, A., Evidente, A., Andolfi, A. and Zermane, N. 2009. Natural metabolites for parasitic weed management. Pest. Manag. Sci. 65:556-571.
  59. Williams, R. D. and Hoagland, R. E. 1982. The effect of naturally occurring phenolic compounds. Weed Sci. 30:206-212.

Cited by

  1. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions vol.13, pp.11, 2011, https://doi.org/10.1111/j.1462-2920.2011.02582.x
  2. Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase vol.35, 2016, https://doi.org/10.1016/j.ymben.2016.02.002
  3. Phytochemicals from the aerial parts of Ligularia thomsonii and their radical scavenging activity vol.7, 2014, https://doi.org/10.1016/j.phytol.2013.09.002
  4. The modulating effect of bacterial volatiles on plant growth vol.7, pp.1, 2012, https://doi.org/10.4161/psb.7.1.18418
  5. Diversity and Characterization of Endophytic Bacteria Associated with Tidal Flat Plants and their Antagonistic Effects on Oomycetous Plant Pathogens vol.28, pp.1, 2012, https://doi.org/10.5423/PPJ.OA.06.2011.0123
  6. Bacillusspp. from rainforest soil promote plant growth under limited nitrogen conditions vol.118, pp.3, 2015, https://doi.org/10.1111/jam.12720