DOI QR코드

DOI QR Code

Chemical and Pharmacological Studies of Saponins with a Focus on American Ginseng

  • Yuan, Chun-Su (Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago Pritzker School of Medicine) ;
  • Wang, Chong-Zhi (Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago Pritzker School of Medicine) ;
  • Wicks, Sheila M. (Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago Pritzker School of Medicine) ;
  • Qi, Lian-Wen (Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago Pritzker School of Medicine)
  • Received : 2010.07.16
  • Accepted : 2010.08.26
  • Published : 2010.09.30

Abstract

Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L.) are the two most recognized ginseng botanicals. It is believed that the ginseng saponins called ginsenosides are the major active constituents in both ginsengs. Although American ginseng is not as extensively studied as Asian ginseng, it is one of the best selling herbs in the US, and has garnered increasing attention from scientists in recent years. In this article, after a brief introduction of the distribution and cultivation of American ginseng, we discuss chemical analysis of saponins from these two ginsengs, i.e., their similarities and differences. Subsequently, we review pharmacological effects of the saponins, including the effects on the cardiovascular system, immune system, and central nervous system as well as the anti-diabetes and anti-cancer effects. These investigations were mainly derived from American ginseng studies. We also discuss evidence suggesting that chemical modifications of ginseng saponins would be a valuable approach to develop novel compounds in drug discovery.

Keywords

References

  1. Court WE. Ginseng: the history of an insignificant plant. Pharm Hist (Lond) 2000;30:38-44.
  2. Ang-Lee MK, Moss J, Yuan CS. Herbal medicines and perioperative care. JAMA 2001;286:208-216. https://doi.org/10.1001/jama.286.2.208
  3. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  4. Jia L, Zhao Y. Current evaluation of the millennium phytomedicine--ginseng (I): etymology, pharmacognosy, phytochemistry, market and regulations. Curr Med Chem 2009;16:2475-2484. https://doi.org/10.2174/092986709788682146
  5. Christensen LP. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2009;55:1-99.
  6. Editor Board of Zhong Hua Ben Cao. The Chinese herbal (Zhong Hua Ben Cao). Shanghai: Shanghai Science and Technology Press, 1999.
  7. Marie-Victorin F, Rouleau E. Flore laurentienne. 2nd ed. Montreal: Les Presses de l'Université de Montreal, 1964.
  8. Ngan F, Shaw P, But P, Wang J. Molecular authentication of Panax species. Phytochemistry 1999;50:787-791. https://doi.org/10.1016/S0031-9422(98)00606-2
  9. Fuzzati N. Analysis methods of ginsenosides. J Chromatogr B Analyt Technol Biomed Life Sci 2004;812:119-133. https://doi.org/10.1016/S1570-0232(04)00645-2
  10. Qu CL, Bai YP, Jin XQ, Wang YT, Zhang K, You JY, Zhang HQ. Study on ginsenosides in different parts and ages of Panax quinquefolius L. Food Chem 2009;115:340-346. https://doi.org/10.1016/j.foodchem.2008.11.079
  11. Wang A, Wang CZ, Wu JA, Osinski J, Yuan CS. Determination of major ginsenosides in Panax quinquefolius (American ginseng) using high-performance liquid chromatography. Phytochem Anal 2005;16:272-277. https://doi.org/10.1002/pca.838
  12. Wang CZ, Yuan CS. Potential role of ginseng in the treatment of colorectal cancer. Am J Chin Med 2008;36:1019-1028. https://doi.org/10.1142/S0192415X08006545
  13. Yoshikawa M, Murakami T, Yashiro K, Yamahara J, Matsuda H, Saijoh R, Tanaka O. Bioactive saponins and glycosides. XI. Structures of new dammarane-type triterpene oligoglycosides, quinquenosides I, II, III, IV, and V, from American ginseng, the roots of Panax quinquefolium L. Chem Pharm Bull (Tokyo) 1998;46:647-654. https://doi.org/10.1248/cpb.46.647
  14. Shin YW, Bae EA, Kim DH. Inhibitory effect of ginsenoside Rg5 and its metabolite ginsenoside Rh3 in an oxazolone-induced mouse chronic dermatitis model. Arch Pharm Res 2006;29:685-690. https://doi.org/10.1007/BF02968253
  15. Nakamura S, Sugimoto S, Matsuda H, Yoshikawa M. Medicinal flowers. XVII. New dammarane-type triterpene glycosides from flower buds of American ginseng, Panax quinquefolium L. Chem Pharm Bull (Tokyo) 2007;55:1342-1348. https://doi.org/10.1248/cpb.55.1342
  16. Schlag EM, McIntosh MS. Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 2006;67:1510-1519. https://doi.org/10.1016/j.phytochem.2006.05.028
  17. Zhang K, Wang X, Ding L, Li J, Qu CL, Chen LG, Jin HY, Zhang HQ. Determination of seven major ginsenosides in different parts of Panax quinquefolius L. (American ginseng) with different ages. Chem Res Chin Univ 2008;24:707-711.
  18. Lim W, Mudge KW, Vermeylen F. Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). J Agric Food Chem 2005;53:8498-8505. https://doi.org/10.1021/jf051070y
  19. Lin WN, Lu HY, Lee MS, Yang SY, Chen HJ, Chang YS, Chang WT. Evaluation of the cultivation age of dried ginseng radix and its commercial products by using (1)H-NMR fingerprint analysis. Am J Chin Med 2010;38:205-218. https://doi.org/10.1142/S0192415X10007762
  20. Sengupta S, Toh SA, Sellers LA, Skepper JN, Koolwijk P, Leung HW, Yeung HW, Wong RN, Sasisekharan R, Fan TP. Modulating angiogenesis: the yin and the yang in ginseng. Circulation 2004;110:1219-1225. https://doi.org/10.1161/01.CIR.0000140676.88412.CF
  21. Wang CZ, Aung HH, Ni M, Wu JA, Tong R, Wicks S, He TC, Yuan CS. Red American ginseng: ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots. Planta Med 2007;73:669-674. https://doi.org/10.1055/s-2007-981524
  22. Lau AJ, Seo BH, Woo SO, Koh HL. High-performance liquid chromatographic method with quantitative comparisons of whole chromatograms of raw and steamed Panax notoginseng. J Chromatogr A 2004;1057:141-149. https://doi.org/10.1016/j.chroma.2004.09.069
  23. Kwon SW, Han SB, Park IH, Kim JM, Park MK, Park JH. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J Chromatogr A 2001;921:335-339. https://doi.org/10.1016/S0021-9673(01)00869-X
  24. Wang CZ, Zhang B, Song WX, Wang A, Ni M, Luo X, Aung HH, Xie JT, Tong R, He TC, et al. Steamed American ginseng berry: ginsenoside analyses and anticancer activities. J Agric Food Chem 2006;54:9936-9942. https://doi.org/10.1021/jf062467k
  25. Jin Y, Lu Z. Effect of PQS on FFA and LDH in rat myocardium damaged by injuring the left anterior descending coronary artery. Baiqiuen Yike Daxue Xuebao 1992;18:121-122.
  26. Li G, Yang S, Lui F. Effect of P. quinquefolius saponin on the platelet aggregation rate and superoxide dismutase activity in the hyperlipidaemic rats. Baiqiuen Yike Daxue Xuebao 1996;22:3.
  27. Shao ZH, Xie JT, Vanden Hoek TL, Mehendale S, Aung H, Li CQ, Qin Y, Schumacker PT, Becker LB, Yuan CS. Antioxidant effects of American ginseng berry extract in cardiomyocytes exposed to acute oxidant stress. Biochim Biophys Acta 2004;1670:165-171. https://doi.org/10.1016/j.bbagen.2003.12.001
  28. Mehendale SR, Wang CZ, Shao ZH, Li CQ, Xie JT, Aung HH, Yuan CS. Chronic pretreatment with American ginseng berry and its polyphenolic constituents attenuate oxidant stress in cardiomyocytes. Eur J Pharmacol 2006;553:209-214. https://doi.org/10.1016/j.ejphar.2006.09.051
  29. Xie JT, Shao ZH, Vanden Hoek TL, Chang WT, Li J, Mehendale S, Wang CZ, Hsu CW, Becker LB, Yin JJ, et al. Antioxidant effects of ginsenoside Re in cardiomyocytes. Eur J Pharmacol 2006;532:201-207. https://doi.org/10.1016/j.ejphar.2006.01.001
  30. Wang CL, Shi DZ, Yin HJ. Effect of Panax quinquefolius saponin on angiogenesis and expressions of VEGF and bFGF in myocardium of rats with acute myocardial infarction. Zhongguo Zhong Xi Yi Jie He Za Zhi 2007;27:331-334.
  31. Prior RL, Cao G, Prior RL, Cao G. Analysis of botanicals and dietary supplements for antioxidant capacity: a review. J AOAC Int 2000;83:950-956.
  32. Wang CZ, Mehendale SR, Yuan CS. Commonly used antioxidant botanicals: active constituents and their potential role in cardiovascular illness. Am J Chin Med 2007;35:543-558. https://doi.org/10.1142/S0192415X07005053
  33. Ng TB, Yeung HW. Hypoglycemic constituents of Panax ginseng. Gen Pharmacol 1985;16:549-552. https://doi.org/10.1016/0306-3623(85)90140-5
  34. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002;51:1851-1858. https://doi.org/10.2337/diabetes.51.6.1851
  35. Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan CS. Anti-hyperglycemic effects of ginseng: comparison between root and berry. Phytomedicine 2003;10:600-605. https://doi.org/10.1078/094471103322331908
  36. Xie JT, Wu JA, Mehendale S, Aung HH, Yuan CS. Anti-hyperglycemic effect of the polysaccharides fraction from American ginseng berry extract in ob/ob mice. Phytomedicine 2004;11:182-187. https://doi.org/10.1078/0944-7113-00325
  37. Xie JT, Mchendale S, Yuan CS. Ginseng and diabetes. Am J Chin Med 2005;33:397-404. https://doi.org/10.1142/S0192415X05003004
  38. Xie JT, Mehendale SR, Li X, Quigg R, Wang X, Wang CZ, Wu JA, Aung HH, A Rue P, Bell GI, et al. Anti-diabetic effect of ginsenoside Re in ob/ob mice. Biochim Biophys Acta 2005;1740:319-325. https://doi.org/10.1016/j.bbadis.2004.10.010
  39. Shang W, Yang Y, Jiang B, Jin H, Zhou L, Liu S, Chen M. Ginsenoside Rb1 promotes adipogenesis in 3T3-L1 cells by enhancing PPARgamma2 and C/EBPalpha gene expression. Life Sci 2007;80:618-625. https://doi.org/10.1016/j.lfs.2006.10.021
  40. Shang W, Yang Y, Zhou L, Jiang B, Jin H, Chen M. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J Endocrinol 2008;198:561-569. https://doi.org/10.1677/JOE-08-0104
  41. Park S, Ahn IS, Kwon DY, Ko BS, Jun WK. Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways. Biosci Biotechnol Biochem 2008;72:2815-2823. https://doi.org/10.1271/bbb.80205
  42. Stohs SJ. The role of free radicals in toxicity and disease. J Basic Clin Physiol Pharmacol 1995;6:205-228. https://doi.org/10.1515/JBCPP.1995.6.3-4.205
  43. Cetin A, Kaynar L, Kocyigit I, Hacioglu SK, Saraymen R, Ozturk A, Sari I, Sagdic O. Role of grape seed extract on methotrexate induced oxidative stress in rat liver. Am J Chin Med 2008;36:861-872. https://doi.org/10.1142/S0192415X08006302
  44. Xie JT, Wang CZ, Li XL, Ni M, Fishbein A, Yuan CS. Anti-diabetic effect of American ginseng may not be linked to antioxidant activity: comparison between American ginseng and Scutellaria baicalensis using an ob/ob mice model. Fitoterapia 2009;80:306-311. https://doi.org/10.1016/j.fitote.2009.04.001
  45. Nah SY, Kim DH, Rhim H. Ginsenosides: are any of them candidates for drugs acting on the central nervous system? CNS Drug Rev 2007;13:381-404.
  46. Chang Y, Huang WJ, Tien LT, Wang SJ. Ginsenosides Rg1 and Rb1 enhance glutamate release through activation of protein kinase A in rat cerebrocortical nerve terminals (synaptosomes). Eur J Pharmacol 2008;578:28-36. https://doi.org/10.1016/j.ejphar.2007.09.023
  47. Tian J, Fu F, Geng M, Jiang Y, Yang J, Jiang W, Wang C, Liu K. Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett 2005;374:92-97. https://doi.org/10.1016/j.neulet.2004.10.030
  48. Benishin CG, Lee R, Wang LC, Liu HJ. Effects of ginsenoside Rb1 on central cholinergic metabolism. Pharmacology 1991;42:223-239. https://doi.org/10.1159/000138801
  49. Lee JH, Jeong SM, Kim JH, Lee BH, Yoon IS, Lee JH, Choi SH, Lee SM, Park YS, Lee JH, et al. Effects of ginsenosides and their metabolites on voltage-dependent Ca(2+) channel subtypes. Mol Cells 2006;21:52-62.
  50. Mook-Jung I, Hong HS, Boo JH, Lee KH, Yun SH, Cheong MY, Joo I, Huh K, Jung MW. Ginsenoside Rb1 and Rg1 improve spatial learning and increase hippocampal synaptophysin level in mice. J Neurosci Res 2001;63:509-515. https://doi.org/10.1002/jnr.1045
  51. Yuan QL, Yang CX, Xu P, Gao XQ, Deng L, Chen P, Sun ZL, Chen QY. Neuroprotective effects of ginsenoside Rb1 on transient cerebral ischemia in rats. Brain Res 2007;1167:1-12. https://doi.org/10.1016/j.brainres.2007.06.024
  52. Chen X, Huang T, Zhang J, Song J, Chen L, Zhu Y. Involvement of calpain and p25 of CDK5 pathway in ginsenoside Rb1’s attenuation of beta-amyloid peptide25-35-induced tau hyperphosphorylation in cortical neurons. Brain Res 2008;1200:99-106. https://doi.org/10.1016/j.brainres.2007.12.029
  53. Xue JF, Liu ZJ, Hu JF, Chen H, Zhang JT, Chen NH. Ginsenoside Rb1 promotes neurotransmitter release by modulating phosphorylation of synapsins through a cAMP-dependent protein kinase pathway. Brain Res 2006;1106:91-98. https://doi.org/10.1016/j.brainres.2006.05.106
  54. Zhao H, Li Q, Pei X, Zhang Z, Yang R, Wang J, Li Y. Long-term ginsenoside administration prevents memory impairment in aged C57BL/6J mice by up-regulating the synaptic plasticity-related proteins in hippocampus. Behav Brain Res 2009;201:311-317. https://doi.org/10.1016/j.bbr.2009.03.002
  55. Zhao H, Li Q, Zhang Z, Pei X, Wang J, Li Y. Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus. Brain Res 2009;1256:111-122. https://doi.org/10.1016/j.brainres.2008.12.031
  56. Corbit R, Ebbs S, King ML, Murphy LL. The influence of lead and arsenite on the inhibition of human breast cancer MCF-7 cell proliferation by American ginseng root (Panax quinquefolius L.). Life Sci 2006;78:1336-1340. https://doi.org/10.1016/j.lfs.2005.07.010
  57. Duda RB, Zhong Y, Navas V, Li MZ, Toy BR, Alavarez JG. American ginseng and breast cancer therapeutic agents synergistically inhibit MCF-7 breast cancer cell growth. J Surg Oncol 1999;72:230-239. https://doi.org/10.1002/(SICI)1096-9098(199912)72:4<230::AID-JSO9>3.0.CO;2-2
  58. Xie JT, Wang CZ, Zhang B, Mehendale SR, Li XL, Sun S, Han AH, Du W, He TC, Yuan CS. In vitro and in vivo anticancer effects of American ginseng berry: exploring representative compounds. Biol Pharm Bull 2009;32:1552-1558. https://doi.org/10.1248/bpb.32.1552
  59. Yue PY, Wong DY, Wu PK, Leung PY, Mak NK, Yeung HW, Liu L, Cai Z, Jiang ZH, Fan TP, et al. The angiosuppressive effects of 20(R)-ginsenoside Rg3. Biochem Pharmacol 2006;72:437-445. https://doi.org/10.1016/j.bcp.2006.04.034
  60. Kim SY, Kim DH, Han SJ, Hyun JW, Kim HS. Repression of matrix metalloproteinase gene expression by ginsenoside Rh2 in human astroglioma cells. Biochem Pharmacol 2007;74:1642-1651. https://doi.org/10.1016/j.bcp.2007.08.015
  61. Kim SM, Lee SY, Cho JS, Son SM, Choi SS, Yun YP, Yoo HS, Yoon do Y, Oh KW, Han SB, et al. Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol 2010;631:1-9. https://doi.org/10.1016/j.ejphar.2009.12.018
  62. Duda RB, Kang SS, Archer SY, Meng S, Hodin RA. American ginseng transcriptionally activates p21 mRNA in breast cancer cell lines. J Korean Med Sci 2001;16 Suppl:S54-S60.
  63. Park JA, Lee KY, Oh YJ, Kim KW, Lee SK. Activation of caspase-3 protease via a Bcl-2-insensitive pathway during the process of ginsenoside Rh2-induced apoptosis. Cancer Lett 1997;121:73-81. https://doi.org/10.1016/S0304-3835(97)00333-9
  64. Jia WW, Bu X, Philips D, Yan H, Liu G, Chen X, Bush JA, Li G. Rh2, a compound extracted from ginseng, hypersensitizes multidrug-resistant tumor cells to chemotherapy. Can J Physiol Pharmacol 2004;82:431-437. https://doi.org/10.1139/y04-049
  65. Luo X, Wang CZ, Chen J, Song WX, Luo J, Tang N, He BC, Kang Q, Wang Y, Du W, et al. Characterization of gene expression regulated by American ginseng and ginsenoside Rg3 in human colorectal cancer cells. Int J Oncol 2008;32:975-983.
  66. Aung HH, Mehendale SR, Wang CZ, Xie JT, McEntee E, Yuan CS. Cisplatin’s tumoricidal effect on human breast carcinoma MCF-7 cells was not attenuated by American ginseng. Cancer Chemother Pharmacol 2007;59:369-374. https://doi.org/10.1007/s00280-006-0278-6
  67. Mehendale S, Aung H, Wang A, Yin JJ, Wang CZ, Xie JT, Yuan CS. American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats. Cancer Chemother Pharmacol 2005;56:63-69. https://doi.org/10.1007/s00280-004-0956-1
  68. Sonnenborn U. Recent investigations of the immunological, pharmacological and endocrinological activities of an old medicinal plant. Deutsch Apoth Zeit 1987;127:433-441.
  69. Court W E. Ginseng: the genus panax. Amsterdam: Harwood Academic Press, 2000.
  70. Zhang D, Wang S, Chang Y, Han H. Effects of Panax quinquefolia saponins on hematopoietic growth factor in cyclophosphamide depressed mice. Baiqiuen Yike Daxue Xuebao 1992;18:412-414.
  71. Zhuang M, Wu Y, Li M, Shu Y. Effects of some medicinal polysaccharides on immune deficiency in animal models induced by cobra anticomplementary factor. J Nat Toxins 1996;5:161-164.
  72. Biondo PD, Goruk S, Ruth MR, O’Connell E, Field CJ. Effect of CVT-E002 (COLD-fX) versus a ginsenoside extract on systemic and gut-associated immune function. Int Immunopharmacol 2008;8:1134-1142. https://doi.org/10.1016/j.intimp.2008.04.003
  73. Cui JF, Bjorkhem I, Eneroth P. Gas chromatographic-mass spectrometric determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol for study on human urinary excretion of ginsenosides after ingestion of ginseng preparations. J Chromatogr B Biomed Sci Appl 1997;689:349-355. https://doi.org/10.1016/S0378-4347(96)00304-0
  74. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 2003;31:1065-1071. https://doi.org/10.1124/dmd.31.8.1065
  75. Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 2004;95:153-157. https://doi.org/10.1254/jphs.FMJ04001X4

Cited by

  1. Drug Interactions with Herbal Medicines vol.51, pp.2, 2012, https://doi.org/10.2165/11597910-000000000-00000
  2. Absorption Mechanism of Ginsenoside Compound K and Its Butyl and Octyl Ester Prodrugs in Caco-2 Cells vol.60, pp.41, 2012, https://doi.org/10.1021/jf303160y
  3. Protective Effect of Ginseng Polysaccharides on Influenza Viral Infection vol.7, pp.3, 2012, https://doi.org/10.1371/journal.pone.0033678
  4. Classification of Cultivation Locations of Panax quinquefolius L Samples using High Performance Liquid Chromatography–Electrospray Ionization Mass Spectrometry and Chemometric Analysis vol.84, pp.8, 2012, https://doi.org/10.1021/ac2032832
  5. Identification of Immunomodulatory Signatures Induced by American Ginseng in Murine Immune Cells vol.2013, pp.1741-4288, 2013, https://doi.org/10.1155/2013/972814
  6. Validation of LC-MS/MS method for determination of ginsenoside Rg1 in human plasma vol.26, pp.4, 2013, https://doi.org/10.5806/AST.2013.26.4.221
  7. Evaluation of Antibacterial and Anti-inflammatory Activities of Less Polar Ginsenosides Produced from Polar Ginsenosides by Heat-transformation vol.61, pp.50, 2013, https://doi.org/10.1021/jf404461q
  8. Effect of saponin on erythrocytes vol.100, pp.1, 2014, https://doi.org/10.1007/s12185-014-1605-z
  9. Heavy metals analysis, phytochemical, phytotoxic and anthelmintic investigations of crude methanolic extract, subsequent fractions and crude saponins from Polygonum hydropiper L vol.14, pp.1, 2014, https://doi.org/10.1186/1472-6882-14-465
  10. Ginseng Diminishes Lung Disease in Mice Immunized with Formalin-Inactivated Respiratory Syncytial Virus After Challenge by Modulating Host Immune Responses vol.34, pp.11, 2014, https://doi.org/10.1089/jir.2013.0093
  11. Effect of sugar concentration on ginsenoside biosynthesis in hairy root cultures of Panax quinquefolium cultivated in shake flasks and nutrient sprinkle bioreactor vol.36, pp.3, 2014, https://doi.org/10.1007/s11738-013-1439-y
  12. -Induced Cell Injury in Human Umbilical Vein Endothelial Cells (HUVECs) vol.62, pp.9, 2014, https://doi.org/10.1021/jf404738s
  13. 20(S)-Protopanaxadiol Inhibition of Progression and Growth of Castration-Resistant Prostate Cancer vol.9, pp.11, 2014, https://doi.org/10.1371/journal.pone.0111201
  14. on Thermoregulation in Animal Models vol.2015, pp.1741-4288, 2015, https://doi.org/10.1155/2015/748041
  15. Correlation between the different therapeutic properties of Chinese medicinal herbs and delayed luminescence vol.31, pp.2, 2015, https://doi.org/10.1002/bio.2961
  16. Cytotoxic saponin poliusaposide from Teucrium polium vol.5, pp.34, 2015, https://doi.org/10.1039/C5RA02713F
  17. The extracts from Panax quinquefolium shoots derived from somatic embryos accumulate ginsenosides and have the antioxidant properties vol.51, pp.6, 2015, https://doi.org/10.1007/s11627-015-9730-9
  18. Tissue-specific metabolite profiling and quantitative analysis of ginsenosides in Panax quinquefolium using laser microdissection and liquid chromatography–quadrupole/time of flight-mass spectrometry vol.9, pp.1, 2015, https://doi.org/10.1186/s13065-015-0141-0
  19. Compound K attenuates stromal cell-derived growth factor 1 (SDF-1)-induced migration of C6 glioma cells vol.10, pp.3, 2016, https://doi.org/10.4162/nrp.2016.10.3.259
  20. 复方西洋参和红枣制剂对小鼠免疫功能影响的研究 vol.17, pp.2, 2016, https://doi.org/10.1631/jzus.B1500170
  21. Significant difference in active metabolite levels of ginseng in humans consuming Asian or Western diet: The link with enteric microbiota vol.31, pp.4, 2017, https://doi.org/10.1002/bmc.3851
  22. Delayed luminescence: an experimental protocol for Chinese herbal medicines vol.31, pp.6, 2016, https://doi.org/10.1002/bio.3094
  23. Profiling of ginsenosides in the two medicinal Panax herbs based on ultra-performance liquid chromatography-electrospray ionization–mass spectrometry vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-3427-3
  24. Korean Red Ginseng and Ginsenoside-Rb1/-Rg1 Alleviate Experimental Autoimmune Encephalomyelitis by Suppressing Th1 and Th17 Cells and Upregulating Regulatory T Cells vol.53, pp.3, 2016, https://doi.org/10.1007/s12035-015-9131-4
  25. Effect of ginseng polysaccharides on the immunity and growth of piglets by dietary supplementation during late pregnancy and lactating sows vol.88, pp.6, 2017, https://doi.org/10.1111/asj.12678
  26. A systematic review of the pharmacokinetic and pharmacodynamic interactions of herbal medicine with warfarin vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0182794
  27. Extracts: Individual vs. Synergistic Effect vol.23, pp.4, 2017, https://doi.org/10.1080/10496475.2017.1322165
  28. Protective Effect of Korean Red Ginseng Extract on the Infections by H1N1 and H3N2 Influenza Viruses in Mice vol.15, pp.10, 2012, https://doi.org/10.1089/jmf.2012.0017
  29. Effects of American ginseng on pharmacokinetics of 5-fluorouracil in rats vol.29, pp.5, 2014, https://doi.org/10.1002/bmc.3354
  30. Vaccination with Astragalus and Ginseng Polysaccharides Improves Immune Response of Chickens against H5N1 Avian Influenza Virus vol.2016, pp.2314-6141, 2016, https://doi.org/10.1155/2016/1510264
  31. Recent Advances in Drug Delivery System for Bioactive Glycosides from Traditional Chinese Medicine pp.1793-6853, 2018, https://doi.org/10.1142/S0192415X18500908
  32. The Phytochemistry of Cherokee Aromatic Medicinal Plants vol.5, pp.4, 2018, https://doi.org/10.3390/medicines5040121
  33. Quality Analysis of American Ginseng Cultivated in Heilongjiang Using UPLC-ESI−-MRM-MS with Chemometric Methods vol.23, pp.9, 2018, https://doi.org/10.3390/molecules23092396
  34. Cardioprotection by ginseng: experimental and clinical evidence and underlying mechanisms vol.96, pp.9, 2018, https://doi.org/10.1139/cjpp-2018-0192
  35. Cytotoxic and anthelmintic potential of crude saponins isolated from Achillea Wilhelmsii C. Koch and Teucrium Stocksianum boiss vol.11, pp.1, 2011, https://doi.org/10.1186/1472-6882-11-106
  36. Tissue‐spray ionization mass spectrometry for raw herb analysis vol.25, pp.19, 2010, https://doi.org/10.1002/rcm.5177
  37. Bioactivity Enhancement of Herbal Supplements by Intestinal Microbiota Focusing on Ginsenosides vol.39, pp.6, 2011, https://doi.org/10.1142/s0192415x11009433
  38. American Ginseng: Research Developments, Opportunities, and Challenges vol.35, pp.3, 2010, https://doi.org/10.5142/jgr.2011.35.3.368
  39. Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng vol.36, pp.1, 2010, https://doi.org/10.5142/jgr.2012.36.1.1
  40. Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea vol.36, pp.1, 2010, https://doi.org/10.5142/jgr.2012.36.1.107
  41. Recent Methodology in Ginseng Analysis vol.36, pp.2, 2010, https://doi.org/10.5142/jgr.2012.36.2.119
  42. Diversity of Fungal Endophytes in Various Tissues of Panax ginseng Meyer Cultivated in Korea vol.36, pp.2, 2012, https://doi.org/10.5142/jgr.2012.36.2.211
  43. Korean Red Ginseng Saponin Fraction Downregulates Proinflammatory Mediators in LPS Stimulated RAW264.7 Cells and Protects Mice against Endotoxic Shock vol.36, pp.3, 2010, https://doi.org/10.5142/jgr.2012.36.3.263
  44. UPLC-Q-TOF-MS/MS Analysis for Steaming Times-dependent Profiling of Steamed Panax quinquefolius and Its Ginsenosides Transformations Induced by Repetitious Steaming vol.36, pp.3, 2010, https://doi.org/10.5142/jgr.2012.36.3.277
  45. Enzymatic Transformation of Ginsenoside Rb1 by Lactobacillus pentosus Strain 6105 from Kimchi vol.36, pp.3, 2010, https://doi.org/10.5142/jgr.2012.36.3.291
  46. Effects of Panax ginseng in Neurodegenerative Diseases vol.36, pp.4, 2010, https://doi.org/10.5142/jgr.2012.36.4.342
  47. Co-administration of aqueous ginseng extract with tobramycin stimulates the pro-inflammatory response and promotes the killing of Pseudomonas aeruginosa in the lungs of infected rats vol.91, pp.11, 2013, https://doi.org/10.1139/cjpp-2013-0073
  48. Healing effects of Musa sapientum var. paradisiaca in diabetic rats with co-occurring gastric ulcer: cytokines and growth factor by PCR amplification vol.13, pp.None, 2010, https://doi.org/10.1186/1472-6882-13-305
  49. Actoprotective effect of ginseng: improving mental and physical performance vol.37, pp.2, 2010, https://doi.org/10.5142/jgr.2013.37.144
  50. Inhibitory effects of total saponin from Korean red ginseng via vasodilator-stimulated phosphoprotein-Ser157 phosphorylation on thrombin-induced platelet aggregation vol.37, pp.2, 2010, https://doi.org/10.5142/jgr.2013.37.176
  51. Phytochemical and toxicological investigations of crude methanolic extracts, subsequent fractions and crude saponins of Isodon rugosus vol.47, pp.1, 2010, https://doi.org/10.1186/0717-6287-47-57
  52. Proton Nuclear Magnetic Resonance Spectrometry-Based Metabolic Characterization of Panax Notoginseng Roots vol.48, pp.8, 2010, https://doi.org/10.1080/00032719.2014.979356
  53. Solvent-based extraction optimisation for efficient ultrasonication-assisted ginsenoside recovery from Panax quinquefolius and P. sikkimensis cell suspension lines vol.29, pp.13, 2015, https://doi.org/10.1080/14786419.2015.1024119
  54. Esterification of Ginsenoside Rh2 Enhanced Its Cellular Uptake and Antitumor Activity in Human HepG2 Cells vol.64, pp.1, 2010, https://doi.org/10.1021/acs.jafc.5b05450
  55. Spectral Analysis of Chinese Medicinal Herbs Based on Delayed Luminescence vol.2016, pp.None, 2010, https://doi.org/10.1155/2016/8469024
  56. A single-center, randomized, double-blind, placebo-controlled study on the efficacy and safety of "enzyme-treated red ginseng powder complex (BG11001)" for antiwrinkle and proelasticity in i vol.40, pp.3, 2016, https://doi.org/10.1016/j.jgr.2015.08.006
  57. Effects of compound K, an enteric microbiome metabolite of ginseng, in the treatment of inflammation associated colon cancer vol.15, pp.6, 2010, https://doi.org/10.3892/ol.2018.8414
  58. A Review of Herbal Therapy in Multiple Sclerosis vol.8, pp.4, 2018, https://doi.org/10.15171/apb.2018.066
  59. Effects of maize rotation on the physicochemical properties and microbial communities of American ginseng cultivated soil vol.9, pp.None, 2010, https://doi.org/10.1038/s41598-019-44530-7
  60. 20(S)-Protopanaxadiol Saponins Mainly Contribute to the Anti-Atherogenic Effects of Panax notoginseng in ApoE Deficient Mice vol.24, pp.20, 2010, https://doi.org/10.3390/molecules24203723
  61. Enhancement of Minor Ginsenosides Contents and Antioxidant Capacity of American and Canadian Ginsengs ( Panax quinquefolius ) by Puffing vol.8, pp.11, 2019, https://doi.org/10.3390/antiox8110527
  62. First Report of Ilyonectria vredehoekensis Causing Rusty Root on American Ginseng in China vol.103, pp.11, 2019, https://doi.org/10.1094/pdis-01-19-0008-pdn
  63. Antimicrobial activities of Asian ginseng, American ginseng, and notoginseng vol.34, pp.6, 2010, https://doi.org/10.1002/ptr.6605
  64. Ginseng integrative supplementation for seasonal acute upper respiratory infections: A systematic review and meta-analysis vol.52, pp.None, 2010, https://doi.org/10.1016/j.ctim.2020.102457
  65. Protective effect of panaxydol against repeated administration of aristolochic acid on renal function and lipid peroxidation products via activating Keap1‐Nrf2/ARE pathway in rat kidney vol.35, pp.1, 2010, https://doi.org/10.1002/jbt.22619
  66. Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension vol.476, pp.1, 2010, https://doi.org/10.1007/s11010-020-03910-8
  67. First Report of Root and Crown Rot of American Ginseng Caused by Pythium spinosum in China vol.105, pp.2, 2010, https://doi.org/10.1094/pdis-01-20-0025-pdn
  68. First Report of Root Rot Caused by Fusarium armeniacum on American Ginseng in China vol.105, pp.4, 2010, https://doi.org/10.1094/pdis-12-19-2554-pdn
  69. Comprehensive Lipidome and Metabolome Profiling Investigations of Panax quinquefolius and Application in Different Growing Regions Using Liquid Chromatography Coupled with Mass Spectrometry vol.69, pp.23, 2021, https://doi.org/10.1021/acs.jafc.1c02241
  70. Phytochemical and Biological Screening of Leaf, Bark and Fruit Extracts from Ilex dipyrena Wall. vol.11, pp.8, 2021, https://doi.org/10.3390/life11080837
  71. Niche specificity and functional diversity of the bacterial communities associated with Ginkgo biloba and Panax quinquefolius vol.11, pp.1, 2010, https://doi.org/10.1038/s41598-021-90309-0
  72. Hypoglycemic and Hypolipidemic Effects of Malonyl Ginsenosides from American Ginseng (Panax quinquefolius L.) on Type 2 Diabetic Mice vol.6, pp.49, 2010, https://doi.org/10.1021/acsomega.1c04656