DOI QR코드

DOI QR Code

Effect of Enzyme Treatment on Functional Properties of Nectarine Beverage

효소처리에 의한 천도복숭아 음료의 기능성 증진

  • Received : 2010.05.25
  • Accepted : 2010.06.24
  • Published : 2010.09.30

Abstract

Nectarine beverage treated with cellulase and pectinase enzymes was measured for mineral contents, total flavonoids, and free amino acids and DPPH radical scavenging effect, nitrite scavenging effect. Total flavonoid contents of the no treatment, treated with pectinase, with cellulase, and with both measured 0.146 mg/mL, 0.167 mg/mL, 0.148 mg/mL and 0.171 mg/mL, respectively. DPPH was measured as 13.42% with no treatment and more than 28.98% with enzyme treatments. Nitrite scavenging effect with no treatment was 79% at pH 1.2. Whereas, it was measured above 90% while treated with enzymes at pH 1.2. And also, the nitrite scavenging effect was slightly higher at pH 3.0, pH 4.0 and pH 6.0 than no treatment. Results of free amino acids analysis revealed that, aspartic acid, serine, alanine, $\gamma$-aminobutylic acid, and glutamic acid were present with the amount ranging from 86.71% to 94.14% from total detected free amino acids. Ornithine and taurine were also observed from the beverages. The mineral contents, nitrogen element (T-N) of enzyme treatment of nectarine beverages were measured slightly higher than T-N of no treatment, however, the $P_2O_5$ was similar. Moreover, CaO, MgO and $K_2O$ in the beverages were measured above 45 mg/L, 85 mg/L and 2,133 mg/L, respectively.

본 연구에서는 효소 처리에 의하여 제조한 천도복숭아 주스에 함유된 총 플라보노이드 함량은 대조구의 경우와 cellulase만을 처리한 처리구의 경우 각각 0.146 mg/mL, 0.148 mg/mL로 유사하였으나 pectinase만을 처리한 처리구와 pectinase와 cellulase를 혼합하여 처리한 처리구의 경우 각각 0.167 mg/mL와 0.171 mg/mL로 대조구보다 높게 나타났다. 항산화작용, 즉 전자공여능(DPPH) 조사한 결과는 효소 처리구들이 대조구의 13.42%보다 높은 28.98% 이상으로 2배 이상의 활성을 나타나 효소처리에 의해 제조된 천도복숭아 주스가 열수추출에 의해 제조된 주스보다 높은 항산화기능이 유지될 수 있음을 유추할 수가 있었다. pH 조건별 아질산염 소거 효과를 비교하여 본 결과 대조구의 경우에서는 아질산염 소거능이 pH 1.2에서 약 79%로 나타났으나 효소 처리구들은 90%를 이상의 결과들을 보였으며, pH 3.0, pH 4.0, pH 6.0에서도 대조구의 경우보다 높게 나타났다. 천도복숭아를 이용하여 제조한 주스의 유리아미노산 분석결과 aspartic acid, serine, alanine, GABA, glutamic acid가 총 유리아미노산 검출양의 86.71%에서 94.14% 범위로 대부분의 유리아미노산을 구성하는 것으로 검출되었으며, ornithine과 taurine 또한 검출이 되었다. 각종 무기원소 함량 조사의 결과는 질소성분(T-N)의 경우 대조구에 비해 효소처리구가 다소 높게 나왔으며, 인성분($P_2O_5$)의 경우는 대조구와 비슷한 결과를 보였으며, 칼슘성분(CaO)의 경우 45 mg/L 이상의 마그네슘성분(MgO)의 경우에서는 85 mg/L 이상의 농도를 보여 역시 높은 함유율을 보였으며, 칼륨성분($K_2O$)의 경우에서는 2,133 mg/L 이상의 농도를 보여 역시 상당히 높은 함유율을 보였다.

Keywords

References

  1. Britannica online http://preview.britannica.co.kr/bol/topic.asparticle_id=b13s1456a. Encyclopaedia Britannica online Korea.
  2. EnCyber. http://www.encyber.com/search_w/ctdetail.php?gs=ws&gd=&cd=&d=&k=&inqr=&indme=&p=1&q=%C3% B5%B5%B5%BA%B9%BC%FE%BE%C6&masterno=8053 48&contentno=805348. EnCyber Doosn Corporation.
  3. Park JD, Hong SI, Park HW, Kim DM. 1999. Modified atmosphere packaging of peaches (Prunus persica L. Batsch) for distribution at ambient temperature. Korean J Food Sci Technol 31: 1227-1234.
  4. Lee DS, Koo YJ, Shin DH, Thorpe RH. 1981. Storage trial of preliminary processed peach. Korean J Food Sci Technol 13: 219-226.
  5. KFN. 2000. Handbook of Experiments in Food Science and Nutrition (Nutrition part). The Korean Society of Food Science and Nutrition. Hyoil, Seoul, Korea. p 285-286.
  6. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  7. Kato H, Lee IE, Chuyen NV. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338. https://doi.org/10.1271/bbb1961.51.1333
  8. Youn SJ, Kim G, Jeong YJ. 2003. Extract characteristics of old pumpkin on enzyme treatment. Korean J Food Preserv 10: 302-307.
  9. Lim DK, Choi U, Shin DH. 1996. Antioxidative activity of ethanol extract from Korean medicinal plants. Korean J Food Sci Technol 28: 83-89.
  10. Park SS, Yu KH, Min TJ. 1998. Antioxidative activities of extracts from fruiting bodies of mushrooms. Korean J Mycology 26: 69-77.
  11. Lee JM, Son ES, Oh SS, Han DS. 2001. Contents of total flavonoid and biological activities of edible plants. Korean J Dietary Culture 16: 504-514.
  12. Lee MH, Jo D, Yoon SR, Lee GD. 2007. Physicochemical properties of functional herb mixtures. J Korean Soc Food Sci Nutr 36: 1571-1577. https://doi.org/10.3746/jkfn.2007.36.12.1571
  13. Kim MS, Kim KH, Yook HS. 2009. The effects of gamma irradiation on the microbiological, physicochemical and sensory quality of peach (Prunus persica L. Batsch cv Dangeumdo). J Korean Soc Food Sci Nutr 38: 364-371. https://doi.org/10.3746/jkfn.2009.38.3.364
  14. Do JR, Kim SB, Park YH, Park YB, Kim DS. 1993. The nitrite scavenging effects by the component of traditional tea materials. Korean J Food Sci Technol 25: 530-534.
  15. Wite JW. 1975. Relative significance of dietary sources of nitrates and nitrite. J Agric Food Chem 23: 886-891. https://doi.org/10.1021/jf60201a034
  16. Kang YH, Park YK, Lee GD. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol 28: 232-239.
  17. Park YB, Lee TG, Kim WK, Do JR, Yeo SG, Park YH, Kim SB. 1995. Characteristics of nitrite scavenger derived from seeds of Cassia tora L. Korean J Food Sci Technol 27: 124-128.
  18. Lee SJ, Shin JH, Chung MJ, Sung NJ. 2000. Effect of natural foods on the inhibition N-nitrosodiummethylamin formation. J Fd Hyg Safety 15: 95-100.
  19. Noh KS, Yang MO, Cho EJ. 2002. Nitrite scavenging effect of Umbelliferaeceae. Korean J Soc Food Cookery Sci 18: 8-12.
  20. Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. 2002. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 213: 1-47. https://doi.org/10.1016/S0074-7696(02)13011-7
  21. Li K, Xu E. 2008. The role and the mechanism of gammaaminobutyric acid during central nervous system development. Neurosci Bull 24: 195-200. https://doi.org/10.1007/s12264-008-0109-3
  22. Satyanarayan V, Nair PM. 1990. Metabolism enzymology and possible roles of $\gamma$-aminobutyrate in higher plants. Phytochem 29: 367-375. https://doi.org/10.1016/0031-9422(90)85081-P
  23. Mody I, Dekoninck Y, Otis TS, Soltesz I. 1994. Bringing the cleft at GABA synapses in the brain. Trends Neurosci 17: 517-525. https://doi.org/10.1016/0166-2236(94)90155-4
  24. Oh SH, Oh CH. 2003. Brown rice extracts with enhanced levels of GABA stimulate immune cells. Food Sci Biotechnol 12: 248-252.
  25. Oh CH, Oh SH. 2004. Effect of germinated brown rice extract with enhanced levels of GABA on cancer cell proliferation and apoptosis. J Med Food 7: 19-23. https://doi.org/10.1089/109662004322984653
  26. Rural Development Administration. 1991. Food ingredient analysis table. 4th ed. Rural Nutrition Institute. p 84-85.

Cited by

  1. Effects of Complex Carbohydrase Treatment on Physiological Activities of Pear Peel and Core vol.43, pp.3, 2014, https://doi.org/10.3746/jkfn.2014.43.3.404
  2. Effect of Different Pre-treatments on the Physicochemical and Antioxidant Activities of Cold-Vacuum Dried Peaches vol.45, pp.4, 2013, https://doi.org/10.9721/KJFST.2013.45.4.466
  3. Quality Characteristics of Madeleine with Peach(Prunus persica L. Batsch) Juice vol.25, pp.3, 2012, https://doi.org/10.9799/ksfan.2012.25.3.664
  4. Quality Properties of Peach Pudding Added with Korean Peach (Prunus persica L. Batsch) Juice and Gelatin vol.43, pp.2, 2014, https://doi.org/10.3746/jkfn.2014.43.2.265
  5. Quality Characteristics of Cold-air and Infrared-dried Peaches vol.19, pp.4, 2012, https://doi.org/10.11002/kjfp.2012.19.4.485
  6. Investigation of Residual Organochlorine Pesticides in Grape and Peach Orchard Soils and Fruits vol.22, pp.4, 2018, https://doi.org/10.7585/kjps.2018.22.4.292
  7. 동결건조 복숭아 가루를 첨가한 양갱의 품질 특성 vol.22, pp.8, 2010, https://doi.org/10.20878/cshr.2016.22.8.006
  8. Quality Characteristics of Sugar-Preserved Peach Juice prepared Using Concentrates of Different Peach Cultivars vol.27, pp.6, 2010, https://doi.org/10.17495/easdl.2017.12.27.6.668
  9. 효소 처리에 따른 야생복숭아(Prunus persica L.) 당절임액의 품질 특성 및 항산화 효과 vol.23, pp.5, 2010, https://doi.org/10.20878/cshr.2017.23.5.003
  10. 효소처리에 의한 천연 마카음료 개발을 위한 최적 추출 조건 vol.34, pp.3, 2010, https://doi.org/10.7318/kjfc/2019.34.3.361