DOI QR코드

DOI QR Code

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path

  • Kim, Yong-Tae (Dept. of Information and Control Engineering, Institute for Information Technology Convergence Hankyong National University)
  • Received : 2010.06.30
  • Accepted : 2010.08.28
  • Published : 2010.09.30

Abstract

This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

Keywords

References

  1. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Boston, 2005.
  2. J.C. Latombe, Robot Motion Planning, Kluwer, Boston, 1991.
  3. J. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue, “Dynamically-stable motion planning for humanoid robots”, Autonomous Robots, vol. 12, no. 1, pp. 105-118, 2002. https://doi.org/10.1023/A:1013219111657
  4. J. Chestnutt and J. J. Kuffner, “A tiered planning strategy for biped navigation”, International Conference on Humanoid Robots, pp. 422-436, 2004. https://doi.org/10.1109/ICHR.2004.1442135
  5. K. Hauser, T. Bretl, J.-C. Latombe, “Using motion primitives in probabilistic sample-based planning for humanoid robots”, Proceedings of the Workshop on the Algorithmic Foundations of Robotics, 2006.
  6. J.-S. Gutmann, M. Fukuchi, and M. Fujita, “Stair climbing for humanoid robots using stereo vision”, International Conference on Intelligent Robots and Systems, pp. 1407-1413, Japan, 2004.
  7. J.-S. Gutmann, M. Fukuchi, and M. Fujita, “Real-time path planning for humanoid robot navigation”, International Joint Conference on Artificial Intelligence, pp. 1232-1237, Scotland, 2005.
  8. J. Chestnutt, J. J. Kuffner, K. Nishiwaki, and S. Kagami, “Planning biped navigation strategies in complex environments”, International Conference on Humanoid Robotics, 2003.
  9. K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of Honda humanoid robot”, International Conference on Robotics and Automation, pp. 1321-1326, May 1998. https://doi.org/10.1109/ROBOT.1998.677288
  10. O. Lorch, A. Albert, J. Denk, M. Gerecke, R. Cupec, J. F. Seara, W. Gerth, and G. Schmidt, “Experiments in visionguided biped walking”, International Conference on Intelligent Robots and Systems, pp. 2489-2490, 2002. https://doi.org/10.1109/IRDS.2002.1041642
  11. Y. T. Kim, S. H. Noh, H. J. Lee, “Walking and stabilization algorithm of biped robot on the uneven ground”, Journal of Fuzzy Logic and Intelligent Systems, vol. 15, no. 1, pp. 907-913, 2005.
  12. Y. Guan, K. Yokoi, N. E. Sian, and K. Tanie, “Feasibility of humanoid robots stepping over obstacles”, International Conference on Intelligent Robots and Systems, pp. 130-135, Sendai, Japan, 2004.
  13. F. Kanehiro, T. Yoshimi, S. Kajita, M. Morisawa K. Fujiwara, K. Harada, K. Kaneko, H. Hirukawa, and F. Tomita, “Whole body locomotion planning of humanoid robots based on a 3D grid map”, International Conference on Robotics and Automation, pp. 1072-1078, 2005. https://doi.org/10.1109/ROBOT.2005.1570258
  14. J.S. Gutmann, M. Fukuchi, and M. Fujita, “A modular architecture for humanoid robot navigation”, International Conference on Humanoid Robotics, pp. 26-31, 2005. https://doi.org/10.1109/ICHR.2005.1573540
  15. Z. Shiller, K. Yamane, and Y. Nakamura, “Planning motion patterns of human figures using a multi-layered grid and the dynamics filter”, International Conference on Robotics and Automation, pp. 1-8, Seoul, Korea, 2001. https://doi.org/10.1109/ROBOT.2001.932521
  16. J. J. Kuffner, Jr., K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. “Motion planning for humanoid robots”, International Symposium on Robotics Researches, pp. 365-374, Siena, Italy, 2003.
  17. Y. T. Kim, S. H. Noh, “Humanoid navigation strategy using fuzzy motion planner in an uneven smart home environment”, 2007 International Symposium on Advanced Intelligent Systems, pp. 597-601, 2007.
  18. Y. T. Kim, S. Candido and S. Hutchinson, “A workspace decomposition for hierarchical motion planning with humanoid robots”, The 13th International Conference on Advanced Robotics, pp. 1069-1074, 2007.

Cited by

  1. Bi-Directional Optical-EtherCAT Communication for Motion Network Control of Humanoid Robot vol.11, pp.04, 2014, https://doi.org/10.1142/S0219843614420067
  2. Implementation of Vector Control of PMSM by Applying Optical-EtherCAT Communication for Robot vol.11, pp.04, 2014, https://doi.org/10.1142/S0219843614420092
  3. Marathon Game and Strategy of Humanoid Robot vol.26, pp.1, 2016, https://doi.org/10.5391/JKIIS.2016.26.1.064
  4. Omni-Directional Walking Pattern Generator for Child-Sized Humanoid Robot, CHARLES2 vol.14, pp.02, 2017, https://doi.org/10.1142/S0219843617500049