High Intensity Focused Ultrasound for Cancer Treatment: Current Agenda and the Latest Technology Trends

HIFU: 현황 및 기술적 동향

  • Seo, Jong-Bum (Department of Biomedical Engineering, Yonsei University)
  • Received : 2010.04.09
  • Accepted : 2010.06.09
  • Published : 2010.06.30

Abstract

High Intensity Focused Ultrasound (HIFU) is a noninvasive surgical method mainly targeting deeply located cancer tissue. Ultrasound is generated from an extemally located transducer and the beam is focused at the target volume, so that selective damage can be achieved without harm to overlying or surrounding tissues. The mechanism for cell killing can be combination of thermal and cavitational damage. Although cavitation can be an effective means of tissue destruction, the possibility of massive hemorrhage and the unpredictable nature of cavitational events prevent clinical application of cavitation. Hence, thermal damage has been a main focus related to HIFU research. 2D phased array transducer systems allow electronic scanning of focus, multi-foci, and anti-focus with multi-foci, so that HIFU becomes more applicable in clinical use. Currently, lack of noninvasive monitoring means of HIFU is the main factor to limit clinical applications, but development in MRI and Ultrasound Imaging techniques may be able to provide solutions to overcome this problem. With the development of advanced focusing algorithm and monitoring means, complete noninvasive surgery is expected to be implemented in the near future.

Keywords

References

  1. FDA, "Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers," 2008.
  2. G. ter Haar, "Ultrasound Focal Beam Surgery," Ultrasound in Med. & Biol., vol. 21, pp. 1089-1100, 1995. https://doi.org/10.1016/0301-5629(95)02010-1
  3. K. Hynynen, "Focused Ultrasound Surgery Guided by MRI," Science & Medicine, vol. 3, pp. 62-71, 1996.
  4. W. J. Fry "Action of Ultrasound on Nerve Tissue-a Review," Symposim on Ultrasound in Biology and Medicine, 1952
  5. W. J. Fry, V. J. Wulpf. D. Tucker, and F. J. Fry, "Physical Factors involved in ultrasound induced changes in living systems: I Identification of Non-Temperature effects," J. Acoust. Soc. Am., vol. 22, pp. 867-876, 1950. https://doi.org/10.1121/1.1906707
  6. W. J. Fry, D. Tucker, F. J. Fry, and V. J. Wulpf, "Physical Factors involved in ultrasound induced changes in living systems: II Amplitude duration relations and the effect of hydrostatic pressure for nerve tissue," J. Acoust. Soc. Am., vol. 23, pp. 364-368, 1951. https://doi.org/10.1121/1.1906774
  7. L. Chen, I. Rivens, G. ter Haar, S. Riddler, C. R. Hill, and J. P. M. Bensted, "Histological Changes in rat liver tumors treated with high-intensity focused ultrasound," Ultrasound in Med. & Biol., vol. 19, pp, 67-74, 1993., https://doi.org/10.1016/0301-5629(93)90019-K
  8. J. Overgaard, "Effect of hyperthermia on malignant cells in vivo. A review and a hypothesis," Cancer, vol. 39, pp, 2637-2646, 1977. https://doi.org/10.1002/1097-0142(197706)39:6<2637::AID-CNCR2820390650>3.0.CO;2-S
  9. J, H, Kim and E, W, Hahn, "Clinical and Biological Studies of Localized Hyperthermia," Cancer Res., vol. 39, pp. 2258-2261. 1979
  10. C. A. Cain and S. I. Umemura, "Concentric-Ring and Sector-Vortex Phased-Array Applicators for Ultrasound Hyperthermia." IEEE Trans. Microwave Theory and Techniques, vol. 5, pp. 542-551,1986.
  11. S, I, Umemura and C, A, Cain, "The Sector-Vortex Phased Array: Acoustic Field Synthesis for Hyperthermia," IEEE Trans, UFFC, vol. 36, pp. 249-257, 1989. https://doi.org/10.1109/58.19158
  12. H, Wan, P, VanBaren, E, S, Ebbini, and C, A. Cain, "Ultrasound Surgery: Comparison of Strategies using Phased array systems,' IEEE Trans. UFFC, vol.43, pp 1085-1097, 1996. https://doi.org/10.1109/16.502419
  13. L. Poissonnier, J. Y. Chapelon, O. Rouvi re, L. Curiel, R. Bouvier, X. Martin, J. M. Dubernard, and A. Gelet, "Control of prostate cancer by transrectal HIFU in 227 patients," Eur Urol., vol. 51, pp 381-387. 2007. https://doi.org/10.1016/j.eururo.2006.04.012
  14. T. J, Dubinsky, C. Cuevas, M. K. Dighe, O. Kolokythas, and J. H. Hwang, "High-Intensity Focused Ultrasound: Current Potential and Oncologic Applicalions," AJR., vol. 190, pp. 191-199, 2008. https://doi.org/10.2214/AJR.07.2671
  15. W. Hong, "Thermal dose optimization for ultrasound tissue ablation: Ph. D Thesis. Univ, of Michigan, Ann Arbor. 1999.
  16. B. C. Tran, J. Seo, T. L. Hall, J. B. Fowlkes, and C. A. Cain, "Microbubble-Enhanced Cavitation for Noninvasive Ultrasound Surgery," IEEE Trans UFFC, vol. 50, pp. 1296-1304, 2003. https://doi.org/10.1109/TUFFC.2003.1244746
  17. T. L. Hall, J. B, Fowlkes, and C, A. Cain, "A real-time measure of cavitation induced tissue disruption by ultrasound imaging backscatter reduction," IEEE Trans UFFC, vol. 54, pp. 569-575, 2007. https://doi.org/10.1109/TUFFC.2007.279
  18. J. E, Parsons, C. A. Cain, G. D. Abrams, and J. B. Fowlkes, "Spatial variability in acoustic backscatter as an indicator of tissue homogenate production in pulsed cavitational ultrasound therapy," IEEE Trans UFFC, vol. 54, pp. 576-590, 2007. https://doi.org/10.1109/TUFFC.2007.280
  19. A. M. Lake, T. L. Hall, K. Kieran, J, B. Fowlkes, C. A. Cain, and W. W. Roberts, "Histotripsy: A minimally invasive technology for prostate tissue ablation in an in-vivo canine model," Urology, vol. 72, pp. 682-686, 2008. https://doi.org/10.1016/j.urology.2008.01.037
  20. J, Seo, B. C. Tran, T. L. Hall, J. B. Fowlkes, G. D. Abrams, M. O' Donnell, and C. A. Cain. "Evaluation of ultrasound tissue damage based on changes in image echogenicity in canine kidney,": IEEE Trans. UFFC, vol. 52, pp. 1111-1120, 2005. https://doi.org/10.1109/TUFFC.2005.1503997
  21. G, R. Harris, "FDA regulation of clinical high intensity focused ultrasound (HIFU) devices," EMBC. pp. 145-148, 2009.
  22. X. Fan and K. Hynynen. "A study of various parameters of spherically curved phased arrays for noninvasive ultrasound surgery," Phys. Med, Biol., vol. 41. pp, 591-608, 1996. https://doi.org/10.1088/0031-9155/41/4/002
  23. E. S. Ebbini, S. J. Umemura, M. Ibbini, and C. A. Cain, "A Cylindrical-section Ultrasound Phased-Array Applicator for Hyperthermia Cancer Therapy," IEEE Trans. UFFC, vol, 35, pp. 561-572, 1988. https://doi.org/10.1109/58.8034
  24. D. R. Daum and K. Hynynen, "A 256-element ultrasonic phased array system for the treatment of large volumes of deep seated tissue." IEEE Trans. UFFC, vol. 46, pp. 1254-1268, 1999. https://doi.org/10.1109/58.796130
  25. E. S. Ebbini and C. A. Cain, "Multiple-Focus Ultrasound Phased-Array Pattern Synthesis: Optimal Driving- Signal Distributions for Hyperthermia," IEEE Trans. UFFFC, vol. 36, pp. 540-548, 1989. https://doi.org/10.1109/58.31798
  26. J. Seo and J. Lee, "Anti-fici for focused ultrasound," Int., J. Hyperther., vol. 25, pp. 566-5801, 2009. https://doi.org/10.3109/02656730903188360
  27. Y. Wang, J. W. Hunt, and F. S. Foster, "Tissue Ultrasound Absorption Measurement with MRI Calorimetry," IEEE Trans, UFFC, vol. 46, pp. 1192-1200, 1999. https://doi.org/10.1109/58.796125
  28. N. Vykhodtseva, V. Sorrenino, F. A. Jolesz, R. T. Bronson, and K. Hynynen, "MRI Detection of the Thermal Effects of Focused Ultrasound of the Brain," Ultrasound in Med. & Biol., vol. 26. pp. 871-880, 2000. https://doi.org/10.1016/S0301-5629(00)00216-7
  29. K. Hynynen, A. Chung, T. Fjield, M. Buchanan, D. Daum, V. Colucci. P. Lopath, and F, Jolesz, "Feasibility of Using Ultrasound Phased Arrays for MRI Monitored Noninvasive Surgery," IEEE Trans. UFFC, vol. 43, pp. 1043-1052, 1996. https://doi.org/10.1109/58.542049
  30. W. C. Connor and K. Hynynen, "Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery," IEEE Trans, Biomed. Eng., vol. 10, pp. 1693-1706, 2004.
  31. X. Yin, L. M. Epstein, and K. Hynynen, "Noninvasive transesophageal cardiac thermal ablation using a 2-D focused, ultrasound phased array: a simulation study," IEEE Trans, UFFC, vol. 53, pp. 1138-1149, 2006. https://doi.org/10.1109/TUFFC.2006.1642512
  32. J. Palussiere, R. Salomir, B. Le Bail, R. Fawaz, B. Quesson, N. Grenier, and C. Moonen, "Feasibility of MR-guided focused ultrasound with real-time temperature mapping and continuous sonication for ablation of VX2 carcinoma in rabbit thigh," Magn. Reson. Med., vol. 49, pp. 89-98, 2003. https://doi.org/10.1002/mrm.10328
  33. R. Seip and E. S. Ebbini, "Noninvasive estimation 이 tissue temperature response to heating fields using diagnostic ultrasound," IEEE Trans. Biomed. Eng., vol.42, pp. 828-839, 1995. https://doi.org/10.1109/10.398644
  34. R. Seip, P. VanBaren, C. A. Cain, and E. S. Ebbini, "Noninvasive real-time multipoint temperature control for Ultrasound phased array treatments," IEEE Trans. UFFC, vol. 43, pp. 1063-1073, 1996. https://doi.org/10.1109/58.542050
  35. C. Simon, P. VanBaren, and E. S. Ebbini, "Two-dimensional temperature estimation using diagnostic ultrasound," IEEE Trans. UFFC, vol. 45, pp. 1088-1099, 1998. https://doi.org/10.1109/58.710592
  36. R. Maass-Moreno, "Noninvasive temperature estimation in tissue via ultrasound echo-shifts Part J. Analytical model," J. Acoust. Soc. Am., vol. 100, pp. 2514-2521, 1996. https://doi.org/10.1121/1.417359
  37. R. Maass-Moreno, "Noninvasive temperature estimation in tissue via ultrasound echo-shifts Part II. In vitro study," J. Acoust. Soc. Am., vol, 100, pp. 2522-2530, 1996. https://doi.org/10.1121/1.417360
  38. L. E. Kinsler, A. R. Rey, A. B. Coppens AB, and J. V. Sanders, Fundamentals of acoustics 4th ed., Jonh Willey & Sons, 2000.
  39. M. Pernot, M. Tanter, J. Bercoff, K. R. Waters, and M. Fink, "Temperature estimation using ultrasonic spatial compound Imaging," IEEE Trans. UFFC, vol. 51, pp. 606-615, 2004. https://doi.org/10.1109/TUFFC.2004.1320832
  40. J. C. Bamber and C. R. Hill, "Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature," Ultrasound Med. Biol., vol. 5, pp. 149-157, 1979. https://doi.org/10.1016/0301-5629(79)90083-8
  41. R. J. McGough, M. L. Kessler, E. S. Ebbini, and C. A. Cain, "Treatment Planning for Hyperthermia with ultrasound phased arrays," IEEE Trans. UFFC, vol. 43, pp. 1074-1084, 1996. https://doi.org/10.1109/58.542051
  42. J. F. Aubry, M. Tanter, M. Pernot, J. L. Thomas, and M. Fink, "Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans," J. Acoust. Soc. Am., vol. 113. pp. 84-93, 2003. https://doi.org/10.1121/1.1529663
  43. K. Hynynen. G. T. Clement, N. McDannold, N. Vykhodtseva, R. King. P. J. White, S. Vitek, and F. A. Jolesz, "A 500 element ultrasound phased array system for noninvasive local surgery of the brain -- a rabbit study with ex vivo human skulls." Magnetic Resonance Imaging, vol. 52, pp. 100-107, 2004.
  44. G. T. Clement, P. J. White, and K. Hynynen, "Enhanced ultrasound transmission through the human skull using shear mode conversion," J. Acoust, Soc. Am., vol. 115, pp. 1356-1364, 2004. https://doi.org/10.1121/1.1645610
  45. G. T. Clement, P. J. White, R. L. King, N. McDannold, and K. Hynynen, "A magnetic resonance imaging-compatible, large scale array for trans-skull ultrasound surgery and therapy," Journal of Ultrasound in Medicine, vol. 24, pp. 1117-1125, 2005. https://doi.org/10.7863/jum.2005.24.8.1117
  46. T. Huttunen, M. Malinen, J. P. Kaipio, P. J. White,and K. Hynynen, "A full-wave Helmholtz model for continuous-wave ultrasound transmission," IEEE Trans. UFFC, vol. 52, pp. 397-409, 2005. https://doi.org/10.1109/TED.2005.843969
  47. P. J. White, G. T. Clement, and K. Hynynen, "Transcranial ultrasound focus reconstruction with phase and amplitude correction," IEEE Trans. UFFC, vol. 52, pp. 1518-1522, 2005. https://doi.org/10.1109/TUFFC.2005.1516024
  48. P. J. White, G. T. Clement, and K. Hynynen, "Local frequency dependence in transcranial ultrasound transmission," Physics in Medicine and Biology, vol.51, pp. 2293-2305, 2006. https://doi.org/10.1088/0031-9155/51/9/013
  49. T. L. Szabo, Diagnostic ultrasound imaging: Inside out, Elsevier Academic. 2004