Ultrasonic Diagnosis of Osteoporosis

초음파를 이용한 골다공증 진단

  • Lee, Kang-Il (Department of Physics, Kangwon National University) ;
  • Yoon, Suk-Wang (Department of Physics, Sungkyunkwan University)
  • Received : 2010.04.30
  • Accepted : 2010.06.09
  • Published : 2010.06.30

Abstract

Osteoporosis is a skeletal disease characterized by two factors: reduced bone mass and microstructure disruption of bone tissue. These symptoms increase bone fragility and can contribute to eventual fracture. In recent years, quantitative ultrasound (QUS) technologies have played a growing role in the diagnosis of osteoporosis. Most of the commercial bone sonometers measure speed of sound and/or broadband ultrasound attenuation at peripheral skeletal sites. However, QUS parameters are purely empirical measures that have not yet been firmly linked to physical parameters, such as bone strength or porosity, and the underlying physics for their variations in cancellous bone is not well understood yet. This paper reviews the QUS technologies for the diagnosis of osteoporosis and also addresses several theoretical models, such as the Biot model, the scattering model, the stratified model, and the modified Biot-Attenborough model, for ultrasonic wave propagation in bone.

Keywords

References

  1. C. F. Njeh, D. Hans, T. Fuersl, C. C. Gluer, and H. K. Genanl, Quantitative Ultrasound: Assessment of Osteoporosis and Bone Status, Marlin Dunitz, London, 1999.
  2. J. C. Rice, S. C. Cowin, and J. A. Bowman, "On the dependence of the elasticity and strength of cancellous bone on apparent density," J. Biomech., vol. 21, no. 2, pp. 155-168, 1988. https://doi.org/10.1016/0021-9290(88)90008-5
  3. S. R. Cummings, D. M. Black, M. C. Nevitt, W. Browner, J. Cauley, K. Ensrud, H. K. Genant, L. Palermo, J. Scott, and T. M. Vogt, "The study of osteoporotic fractures research group: bone density at various sites for the prediction of hip fractures," Lancet, vol. 341, no. 8837, pp. 72-75, 1993. https://doi.org/10.1016/0140-6736(93)92555-8
  4. S. Levis and R. Altman, "Bone densitometry : clinical considerations," Arthritis Rheum, vol. 41, no. 4, pp. 577-587, 1998. https://doi.org/10.1002/1529-0131(199804)41:4<577::AID-ART4>3.0.CO;2-7
  5. G. M. Blake and I. Fogelman, "Technical principles of dual energy x-ray absorptiometry, Semin. Nucl. Med., vol. 27, no. 3, pp. 210-228, 1997. https://doi.org/10.1016/S0001-2998(97)80025-6
  6. P. Laugier, "Instrumentation for in vivo ultrasonic characterizalion of bone strength," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 6. pp. 1179-1196, 2008. https://doi.org/10.1109/TUFFC.2008.782
  7. C. M. Langton, S. B. Palmer, and R. W. Porter, "The measurement of broadband ultrasonic attenuation in cancellous bone," Eng. Med., vol. 13, no. 2, pp. 89-91, 1984. https://doi.org/10.1243/EMED_JOUR_1984_013_022_02
  8. P. Laugier, "An overview of bone sonometry," in Proc. 7th Congress of the Asian Federation of Ultrasound in Medicine and Biology, pp. 23-32. Oct. 2004.
  9. I. Siegel, G. T. Anast, and T. Melds, "The determination of fracture healing by measurement of sound velocity across the fracture site," Surg. Gynecol, Obstet., vol. 107, no. 3, pp. 327-332, 1958.
  10. K. A. Wear and D. W. Armstrong III, "Relationships among calcaneal backscatter, attenuation, sound speed, hip bone mineral density, and age in normal adult women, J. Acoust. Soc. Am., vol. 110, no. 1, pp. 573-578, 2001. https://doi.org/10.1121/1.1378343
  11. K. A. Wear, "Measurements of phase velocity and group velocity in human calcaneus," Ultrasound Med. Biol., vol. 26, no. 4, pp. 641-646, 2000. https://doi.org/10.1016/S0301-5629(99)00172-6
  12. V. Roberjot, L, Bridal, P. Laguier, and G. Berger, "Absolute backscatter coefficient over a wide range of frequencies in a tissue-mimicking phantom containing two populations of scatterers," IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 43, no. 5, pp. 970-978, 1996. https://doi.org/10.1109/58.535501
  13. S. Chaffai, F. Peyrin, S. Nuzzo, R. Porcher, G. Berger, and P. Laugier, "Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: Relationships to density and microstructure," Bone, vol. 30, no. 1, pp. 229-237, 2002. https://doi.org/10.1016/S8756-3282(01)00650-0
  14. F. Padilla, F. Jenson, V, Bousson, F. Peyrin, and P. Laugier, "Relationships of trabecular bone structure with quantitative ultrasound parameters: in vitro study on human proximal femur using transmission and backscatter measurements," Bone. vol. 42, no. 6, pp. 1193-1202, 2008. https://doi.org/10.1016/j.bone.2007.10.024
  15. M, A. Hakulinen, J. Toyras, S. Saarakkala, J. Hirvonen, H. Kroger, and J. S. Jurvelin, "Ability of ultrasound backscattering to predict mechanical prooerties of bovine trabecular bone," Ultrasound Med. Biol., vol. 30, no. 7, pp. 919-927, 2004. https://doi.org/10.1016/j.ultrasmedbio.2004.04.006
  16. M. A. Hakulinen, J. S. Day, J. Toyras, M. Timonen, H. Kroger, H. Weinans, I. Kiviranta, and J. S. Jurvelin, "Prediction of density and mechanical properties of human, "Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound properties of human trabecular bone in vitro by using ultrasound transmission and backscattring measurement at 0.2-6.7 MHz frequency range," Phys, Med. Biol., vol. 50, no. 8, pp. 1629-1642, 2005. https://doi.org/10.1088/0031-9155/50/8/001
  17. K. I. Lee, "Relationships of bone density with quantitative ultrasound parameter in vbovine cancellous bone," J. Korean PHYS. Soc., vol. 54, no. 1, pp. 71-74, 2009. https://doi.org/10.3938/jkps.54.71
  18. P. Moilanen, "Ultrasonic guided wave in bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 6, pp. 1277-1286, 2008. https://doi.org/10.1109/TUFFC.2008.790
  19. R. B. Martin, "Determinants of the mechanical properties of bones," J. Biomech., vol,24, no. S1, pp. 79-88, 1991. https://doi.org/10.1016/0021-9290(91)90379-2
  20. G. Lowet and G, Van der Perre, "Ultrasound velocity measurement in long bones: measurement method and simulation of ultrasound wave propagation," J. Biomech., vol. 29, no. 10, pp. 1255-1262, 1996. https://doi.org/10.1016/0021-9290(96)00054-1
  21. E. Bossy, M. Talmant, and P. Laugier, "Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study," J. Acoust. Soc. Am., vol. 112, no. 1, pp. 297-307, 2002. https://doi.org/10.1121/1.1480836
  22. P. H. Nicholson, P. Moilanen, T. Karkkainen, J. Timonen, and S. Cheng, "Guided ultrasonic waves in long bones: modelling, experiment and in vivo application," Physiol. Meas., vol. 23, no. 4, pp. 755-768, 2002. https://doi.org/10.1088/0967-3334/23/4/313
  23. K, I. Lee and S. W. Yoon, "Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia," J. Acoust. Soc. Am., vol. 115, no. 6, pp. 3210-3217, 2004. https://doi.org/10.1121/1.1707086
  24. K. A. Wear, "Autocorrelation and cepstral methods for measurement of tibial cortical thickness." IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 50, no. 6, pp. 655-660, 2003. https://doi.org/10.1109/TUFFC.2003.1209552
  25. P. H. F. Nicholson, R. Muller, X. G. Cheng, P. Ruegsegger, G. Van Der Perre, J. Dequeker, and S. Boonen, "Quantitative ultrasound and trabecular architecture in the human calcaneus," J. Bone Miner. Res., vol. 16, no. 10, pp. 1886-1892, 2001. https://doi.org/10.1359/jbmr.2001.16.10.1886
  26. M. A. Biot, "Theory of propagation of elastic waves in a fluid-saturated solid. I. Low-frequency range," J. Acoust, Soc. Am., vol. 28, no. 2, pp. 168-178, 1956. https://doi.org/10.1121/1.1908239
  27. K. I. Lee, V. F. Humphrey, T. G. Leighton, and S. W. Yoon, "Predictions of the modified Biot-Attenborough model for the dependence of phase velocity on porosity in cancellous bone," Ultrasonics, vol. 46, no. 4, pp. 323-330, 2007. https://doi.org/10.1016/j.ultras.2007.01.012
  28. T. J. Haire and C. M. Langton, "Biot theory: a review of its application to ultrasound propagation through cancellous bone," Bone, vol. 24, no. 4, pp. 291-295, 1999. https://doi.org/10.1016/S8756-3282(99)00011-3
  29. R. D. Stoll and G. M. Bryan, "Wave attenuation in saturated sediments," J. Acoust, Soc. Am., vol.47, no. 5B, pp. 1440-1447, 1970. https://doi.org/10.1121/1.1912054
  30. K. A. Wear, A. Laib, A. P. Stuber, and J. C. Reynolds, "Comparison of measurements of phase velocity in human calcaneus to Biot theory." J. Acoust. Soc. Am., vol. 117, no. 5, pp. 3319-3324, 2005. https://doi.org/10.1121/1.1886388
  31. R. Strelitzki, P. H. F. Nicholson, V. Paech, "A model for ultrasonic scattering in cancellous bone based on veocity fluctualions in a binary mixture," Physiol. Meas.,vol. 19, no. 2, pp. 189-196, 1998. https://doi.org/10.1088/0967-3334/19/2/006
  32. P. H. F. Nicholson, R. Strelitzki, R. O. Cleveland, M. L. Bouxsein, "Scattering of ultrasound in cancellous bone: predictions from a theoretical model," J. Biomech., vol. 33, no. 4, pp. 503-506, 2000. https://doi.org/10.1016/S0021-9290(99)00208-0
  33. E. R. Hughes, T. G. Leghton, G. W. Petley, and P. R. White, "Ultrasonic propagation in cancellous bone: a new stratified model," Ultrasound Med. Biol., vol. 25, no. 5, pp. 811-821, 1999. https://doi.org/10.1016/S0301-5629(99)00034-4
  34. M. Schoenberg. "Wave propagation in alternating solids and fluid layers," Wave Motion, vol. 6, no.3, pp. 303-320, 1984. https://doi.org/10.1016/0165-2125(84)90033-7
  35. K. A. Wear, "A stratified model to predict dispersion in trabecular bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 48, no. 4. pp. 1079-1083, 2001. https://doi.org/10.1109/58.935726
  36. W. Lin, Y. X. Qin, and C. Ruvin, "Ultrasonic wave propagation in trabecular bone predicted by the stratified model," Ann. Biomed. Eng., vol. 29, no. 9, pp. 781-790, 2001. https://doi.org/10.1114/1.1397787
  37. K. I. Lee and M. J. Choi, "Prediction of the dependence of phase velocity on porosity in cancellous bone," J. Acoust. Soc. Kor., vol. 27, no. 2E, pp. 45-50, 2008.
  38. H. S. Roh and S. W. Yoon, "Acoustic diagnosis for porous medium with circular cylindrical pores," J. Acousl. Soc. Am., vol. 115, no. 3, pp. 1114-1124, 2004. https://doi.org/10.1121/1.1645247
  39. K. I. Lee, H. S. Roh, and S. W. Yoon, "Acoustic wave propagalion in bovine cancellous bone: application of the modified Biot-Attenborough model," J. Acousl. Soc. Am., vol. 114, no. 4, pp. 2284-2293, 2003. https://doi.org/10.1121/1.1610450
  40. K. Attenborough, "Acoustic characteristics of rigid fibrous absorbents and granular materials," J. Acousl. Soc. Am., vol. 73, no. 3, pp. 785-799, 1983. https://doi.org/10.1121/1.389045
  41. C. Zwikker and C. W. Kosten, Sound Absorbing Materials, Elsevier. Amsterdam, 1949.
  42. G. Haiat, F. Padilla, R. Barkmann, S. Kolta, C. Latremouille, C. C. Gluer, and P. Laugier, " In vitro speed of sound measurement at intact human femur specimens," Ultrasound Med. Biol., vol. 31, no. 7, pp. 987-996, 2005. https://doi.org/10.1016/j.ultrasmedbio.2005.02.015
  43. F. Jenson, F. Padilla, V. Bousson, C. Bergot, J. D. Laredo, and P. Laugier, "In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: Relationships to bone mineral density," J. Acoust. Soc. Am., vol. 119, no. 1, pp. 654-663, 2006. https://doi.org/10.1121/1.2126936
  44. R. Barkmann, P. Laugier, U. Moser, S. Dencks, F. Padilla, G. Haiat, M. Heller, and C. C. Gluer, "A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur," Bone, vol. 40, no. 1, pp. 37-44, 2007. https://doi.org/10.1016/j.bone.2006.07.010
  45. R. Barkmann, P. Laugier, U. Moser, S. Dencks, M. Klausner, F. Padilla, G. Haiat, and C. C. Cluer, "A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 6, pp. 1197-1204, 2008. https://doi.org/10.1109/TUFFC.2008.783
  46. K. I. Lee, "A study on acoustic characteristics of cancellous and cortical bones for the diagnosis of osteoporosis," Ph. D. thesis, Sungkyunkwan Universily, 2003.