DOI QR코드

DOI QR Code

Study on Arrangement of Self-Resonant Coils in Wireless Power Transfer System Based on Magnetic Resonance

자기 공명 무선 전력 전송 시스템에서 공진 코일의 배열에 관한 연구

  • 김진욱 (과학기술연합대학원대학교 전력정보통신공학과) ;
  • 지현호 (한양대학교 전자정보시스템공학과) ;
  • 최연규 (한양대학교 전자 및 통신공학과) ;
  • 윤영현 (한양대학교 전자 및 통신공학과) ;
  • 김관호 (한국전기연구원 전기정보망 연구센터) ;
  • 박영진 (과학기술연합대학원대학교 전력정보통신공학과)
  • Accepted : 2010.06.07
  • Published : 2010.06.30

Abstract

In this paper, characteristics on arrangement of coils in the wireless power transfer system based on magnetic resonance is presented. A helical structure is used for a self-resonant coil. To design a proper self-resonant helical coil, its inductance and capacitance are obtained. Using the finite element method, the self-resonant coil designed is simulated and characteristics of wireless power transfer with various arrangement between Tx and Rx resonant coils is analyzed. For verification, a prototype of a wireless power transfer system based on magnetic resonance is fabricated and efficiency of different arrangement such as both vertical and parallel arrangements is measured. From the measurement, transmission efficiency of 50 % for parallel arrangement is obtained within twice the diameter of the coil while for the vertical arrangement it is measured within one and a half diameter of the coil. Maximum efficiency of 84.25 % is observed at the distance 40 cm from the resonant coil in the case of parallel arrangement.

본 논문에서는 자기 공명 방식의 무선 전력 전송 시스템에서 공진 코일의 배열에 따른 특성을 제시한다. 공진 코일에는 헬리컬 구조를 사용하였다. 공진 코일을 설계하기 위해 헬리컬 코일의 인덕턴스와 커패시턴스를 구하였다. 유한 요소법을 이용하여 설계된 공진 코일을 시뮬레이션 하였고, 송수전 공진 코일 간의 다양한 배열에 대한 특성을 해석하였다. 검증을 위하여 시제품을 제작하였고, 수직 및 평행 배열일 때의 효율을 측정하였다. 측정 결과, 평행 배열일 때는 50 %의 전달 효율을 얻을 수 있는 구간이 코일 지름의 2배 이내였고, 수직 배열일때는 코일 지름의 1.5배 이내였다. 제작한 시제품은 평행 배열된 송수전 공진 코일이 40 cm 간격일 때 최대 84.25 %의 효율을 보였다.

Keywords

References

  1. Nikola Tesla, "Apparatus for transmitting electrical energy", US patent 1119732, 1914.
  2. Hidetoshi Matsuki, Frontier of Wireless Electric Power Transmission, 세이모시 출판, 2009.
  3. 대한전기학회 기획시리즈, "무선 전력 전송 기술의 동향 및 현황", 대한전기학회지, 59(1), 2010년 1월.
  4. Andre Kurs, Aristeidis Karalis, Robert Moffatt, J. D. Joannopoulos, Peter Fisher, and Marin Soljacic, "Wireless power transfer via strongly coupled magnetic resonances", Science, vol. 317, Jul. 2007.
  5. Aristeidis Karalis, J. D. Joannopoulos, and Marin Soljacic, "Efficient wireless non-radiative mid-range energy transfer", Annals of Physics, vol. 323, 34, 2008. https://doi.org/10.1016/j.aop.2007.04.017
  6. Youndo Tak, Jongmin Park, and Sangwook Nam, "Mode-based analysis of resonant characteristics for near-field coupled small antennas", IEEE Antennas and Wireless Propagation Letters, vol. 8, 2009. https://doi.org/10.1109/LAWP.2009.2036133
  7. Ansoft, HFSS v.11.2.
  8. Hermann A. Haus, Weiping Huang, "Coupled-mode theory", Proceedings of the IEEE, vol. 79, no. 10, Oct. 1991. https://doi.org/10.1109/5.104225
  9. H. A. Wheeler, "Simple inductance formulas for radio coils", Proc. IRE, vol. 16, pp. 1398-1400, 1929.
  10. H. A. Wheeler, "Discussion", Proc. IRE, vol. 17, pp. 580-582, 1929. https://doi.org/10.1109/JRPROC.1929.221706
  11. Peter Vizmuller, RF Design Guide: Systems, Circuits and Equations, Artech House, 1995.
  12. R. H. Good, "Elliptic integrals, the forgotten functions", European Journal of Physics, vol. 22, 2001.

Cited by

  1. Mutual Inductance Calculation and Analysis between Two Circular Coils of Perpendicular Arrangement vol.22, pp.10, 2011, https://doi.org/10.5515/KJKIEES.2011.22.10.999
  2. Novel Mutual Inductance Formula for the Magnetic Resonance Wireless Power Transmission System Using Helical Coils vol.23, pp.6, 2012, https://doi.org/10.5515/KJKIEES.2012.23.6.669
  3. Design of a High Efficiency Resonator for Wireless Power Transfer vol.22, pp.9, 2011, https://doi.org/10.5515/KJKIEES.2011.22.9.820
  4. Performance Measurement of the Wireless Charging Devices Using Eletromagnetic Induction Techniques vol.19, pp.3, 2015, https://doi.org/10.12673/jant.2015.19.3.237
  5. Analysis and Comparison for a 4-Coil Magnetic Resonance Wireless Power Transfer System vol.24, pp.2, 2013, https://doi.org/10.5515/KJKIEES.2013.24.2.168
  6. Analysis of Safety Distance and Maximum Permissible Power of Resonant Wireless Power Transfer Systems with Regard to Magnetic Field Exposure vol.20, pp.4, 2015, https://doi.org/10.4283/JMAG.2015.20.4.450
  7. Design of a High Power Frequency Tuneable Resonator for Wireless Power Transfer vol.24, pp.3, 2013, https://doi.org/10.5515/KJKIEES.2013.24.3.352