Preparation and Characterization of Fire-Resistant Silicone Polymer Composites Containing Inorganic Flame Retardants

무기계 난연제를 첨가한 실리콘 고분자 내화재료의 제조 및 특성분석

  • Yoon, Chang-Rok (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jong-Hyeok (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Bang, Dae-Suk (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Won, Jong-Pil (Department of Civil Engineering, Kumoh National Institute of Technology) ;
  • Jang, Il-Young (Department of Civil and Environmental System Engineering, Konkuk University) ;
  • Park, Woo-Young (Dong-Nam E&C Co. Ltd.)
  • 윤창록 (금오공과대학교 고분자공학) ;
  • 이종혁 (금오공과대학교 고분자공학) ;
  • 방대석 (금오공과대학교 고분자공학) ;
  • 장일영 (금오공과대학교 토목공학) ;
  • 원종필 (건국대학교 사회환경시스템공학) ;
  • 박우영 (동남이엔씨(주))
  • Received : 2010.02.24
  • Accepted : 2010.06.07
  • Published : 2010.06.30

Abstract

The fire resistive materials are used to resist from fire accidents in the building. In this study silicone rubber/inorganic flame retardant composites were prepared by mechanical stirring method, using aluminium trihydroxide(ATH, $Al(OH)_3$) and magnesium dihydroxide(MDH, $Mg(OH)_2$) as synergistic fire-resistant additives. The thermal properties of the fire resistant composites were characterized by thermogravimetric analysis(TGA). In addition, rheological properties were observed by rheometer and fire-resistant properties were tested by gas torch. Through this study, we realized that the silicone rubber containing ATH, MDH increased the performance of fire-resistance.

내화재료는 건축물에서 화재사고로부터 화염을 차단하기 위해 사용된다. 본 연구에서는 실리콘 고무에 무기계 난연제인 aluminium trihydroxide(ATH, $Al(OH)_3$)와 magnesium dihydroxide(MDH, $Mg(OH)_2$)를 첨가한 복합체를 기계적 교반으로 제조한 후 내화성능향상에 관한 연구를 진행하였다. 내화재료의 열 특성분석을 위해 TGA를 사용하였고, rheometer를 이용해 유변학적 분석을 하였다. 내화특성을 분석하기 위해 gas torch를 이용하였다. 본 연구를 통하여 ATH와 MDH가 첨가되면 실리콘 고무의 내화성능이 향상됨을 알 수 있었다.

Keywords

References

  1. 이재승, 정경수, "고강도 콘크리트의 폭렬발생 원인조사에 관한 실험적 연구", 대한건축학회 논문집-구조계, 24, 101 (2008).
  2. 이세현, 송 훈, "방 ․ 내화재료 설계 시 고려사항", 건축, 51, 65 (2007).
  3. A. Genovese and R. A. Shanks, "Fire performance of poly(dimethyl siloxane) composites evaluated by cone calorimetry", Composites: Part A, 39, 398 (2008). https://doi.org/10.1016/j.compositesa.2007.09.009
  4. A. Genovese and R. A. Shanks, "Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hydroxide and zinc borate", Polym. Degrad. Stab, 92, 2 (2007). https://doi.org/10.1016/j.polymdegradstab.2006.10.006
  5. 황택성, 이범재, 양윤규, 최재훈, 김현중, "난연성 고분자 재료의 기술개발 동향", 공업화학 전망, 8, 36 (2005).
  6. S. Hamdani, C. Longuet, D. Perrin, J. Lopez-cuesta, and F. Ganachaud, "Flame retardancy of silicone-based materials", Polym. Degrad. Stab., 94, 465 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.11.019
  7. 최신 국내 ․ 세계의 난연제 시장 및 환경규제 현황 보고서 (2005).
  8. I. Haukur and L. Anders, "Recent Achievents Regarding Measuring of Time-Heat and Time-Temperature development in Tunnel", Safe & Tunnels, First International Symposium. Prague (2004), pp. 87-96.
  9. G. Camino, S. M. lomakin, and M. Lazzari, "Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects", Polymer, 42, 2395 (2001). https://doi.org/10.1016/S0032-3861(00)00652-2
  10. G. Camino, S. M. lomakin, and M. Lazzari, "Polydimethylsiloxane thermal degradation Part 2. The degradation mechanisms", Polymer, 43, 2011 (2002). https://doi.org/10.1016/S0032-3861(01)00785-6
  11. H. Homma, T. Kuroyagi, K. Izumi, C. L. Mirley, J. Ronzello, and S. A. Boggs, "Evaluation on surface degradation of silicone rubber using thermogravimetric analysis", Electrical Insulating Materials, 1998. Proceedings of 1998 International Symposium on, 27-30 Sept. 1998 Page(s):631-634.
  12. X. Xu, C. Gao, and Q. Zheng, "Rheological characterization of room temperature vulcanized silicone sealant: Effect of filler particle size", Polym. Eng. Sci., 48, 656 (2008). https://doi.org/10.1002/pen.20992
  13. 심상은, "Structure and properties of precipitated silica filled silicone rubber", Rubber Technology, Vol. 7, No. 1, 2006.
  14. K. Pirre, C. Gregoire, and G. Christophe, "High-temperature behavior of HPC with polypropylene fiber from spalling to microstructure", Cement and Concrete Research, 31, 1487 (2001). https://doi.org/10.1016/S0008-8846(01)00596-8