Resveratrol Content and Nutritional Components in Peanut Sprouts

땅콩나물의 레스베라트롤 함량 및 영양성분 분석

  • Kang, Hye-In (Department of Food and Nutrition, Sunchon National University) ;
  • Kim, Jae-Yong (Research Institute of Basic Science, Sunchon National University) ;
  • Park, Kyung-Wuk (S-biofood) ;
  • Kang, Jum-Soon (Department of Horculture Bioscience, Pusan National University) ;
  • Choi, Myeong-Rak (Division of Biotechnology and Chemical Engineering, Chommam National University) ;
  • Moon, Kwang-Deong (Department of Food Science and Technology, Kyungpook National University) ;
  • Seo, Kwon-Il (Department of Food and Nutrition, Sunchon National University)
  • Received : 2010.01.27
  • Accepted : 2010.06.04
  • Published : 2010.06.30

Abstract

To assess the potential of peanut sprouts as a functional food material, the germination rate, resveratrol content, and nutritional components of sprouts were analyzed. Of all samples tested, Gyeong-buk peanuts had the highest germination rate. The resveratrol content was higher in peanuts than in peanut sprouts. The resveratrol level in Gyeong-buk peanut sprout ($15.5{\mu}g/g$) was the greatest of all tested samples. The cotyledon of Gyeong-buk peanut sprout had the highest resveratrol content ($24.89{\mu}g/g$), followed by the roots ($12.66{\mu}g/g$), but resveratrol was not detected in the stems. The levels of moisture, crude protein, crude fat, ash, and carbohydrate in Gyeong-buk peanut sprout were 6.69%, 35.58%, 33.08%, 2.96%, and 21.96% (all w/w), respectively, in dried material. Compared with peanuts, peanut sprouts contained higher protein levels, and a lower content of crude fat, but showed a minimal difference in mineral content. The amino acid content of peanut sprouts (2,551.8 mg/100 g) was higher than that of peanuts (87.89 mg/100 g). Specifically, the asparagine content of peanut sprouts (834.54 mg/100 g) was the highest of all amino acids. Saturated fatty acids, including myristic and palmitic acids, were detected in peanuts, and the levels of unsaturated fatty acids such as oleic (31.19 g/100 g) and linoleic acids (39.24 g/100 g) in peanut sprouts were higher than those of other fatty acids.

땅콩나물을 기능성 식품 소재로 사용하기 위한 기초자료를 제공하기 위하여 발아율, 레스베라트롤 함량 및 영양성분을 분석하였다. 원산지별 땅콩 종자의 발아율은 다른 원산지 땅콩 보다 경북산 땅콩의 발아율이 가장 높았다. 레스베라트롤 함량은 땅콩보다 땅콩나물이 높았으며, 특히 경북산 땅콩나물에서 그 함량이 $15.5{\mu}g/g$ 으로 가장 높았다. 한편 경북산 땅콩나물의 부위(잎, 뿌리 및 줄기)별 레스베라트롤 함량을 측정한 결과 잎에서 그 함량이 $24.89{\mu}g/g$ 으로 가장 높았고, 다음으로 뿌리에 $12.66{\mu}g/g$ 이 함유되어 있었으며, 줄기부분에는 레스베라트롤이 검출되지 않았다. 경북산 땅콩나물의 일반성분은 건물을 기준으로 수분함량은 6.69%, 조단백질 35.58%, 조지방 33.08%, 조회분 2.96% 및 탄수화물 21.69%를 함유하였다. 땅콩나물은 땅콩에 비하여 조단백질 함량은 많았고, 조지방 함량은 적었으나, 무기질 함량은 거의 차이가 나지 않았다. 땅콩나물의 아미노산 함량은 땅콩에 비하여 높았으며, asparagine이 834.54 mg/100 g 으로 가장 많이 함유되어 있었다. 땅콩에서는 myristic acid 와 palmitic acid와 같은 포화지방산들이 주로 검출되었으며, 땅콩나물에서는 oleic acid 및 linoleic acid와 같은 불포화지방산의 함량이 각각 31.19 및 39.24 g/100 g로 높게 나타났다.

Keywords

References

  1. Ha, J.O., Ha, T.M., Lee, J.J., Kim, A.R. and Lee, M.Y. (2009) Chemical components and physiological functionalities of Brassica campestris ssp rapa sprouts. J. Korean Soc. Food Sci. Nutr., 38, 1302-1309 https://doi.org/10.3746/jkfn.2009.38.10.1302
  2. Woo, N., Song, E.S., Kim, H.J., Seo, M.S. and Kim, A.J. (2007) The comparison of antioxidative activities of sprouts extract. Korean J. Food Nutr., 20, 356-362
  3. Lee, J.J, Lee, Y.M., Shin, H.D., Jeong, Y.S. and Lee, M.Y. (2007) Effect of vegetable sprout power mixture on lipid metabolism in rats fed high fat diet. J. Korean Soc. Food Sci. Nutr., 36, 965-974 https://doi.org/10.3746/jkfn.2007.36.8.965
  4. Lee, M.H., Son, H.S., Choi, O.K., Oh, S.K. and Kwon, T.B. (1994) Changes in physico chemical properties and mineral contents during buck whet germination. Korean J. Food Nutr., 7, 267-273
  5. Ikeda, K., Arioka, K., Fuji, S., Kusano, T. and Oku, M. (1984) Effects on buck wheat protein quality of seed germination and changes in trypsin inhibitor content. Cereal Chem., 61, 236-240
  6. Cho, B.M., Yoon, S.K. and Kim, W.J. (1985) Changes in amino acid and fatty acids composition during germination of rapeseed. Korean J. Food Sci. Technol., 17, 371-376
  7. Kim, W.J., Kim, N.M. and Sung, H.S. (1984) Effects of germination phytic acid and soluble minerals in soymilk. Korean J. Food Sci. Technol., 16, 358-362
  8. Romero-perez, A.I., Lamuela-Raventos, R.M., Andres- Lacueva, C., Cristina, A.L. and de la Toree-Brornat, M.C. (2001). Method of the quantitative extraction of reveratrol and picid isomers in grape berry skin, effect of powdery mildew on the stilbene content. J. Agric. Food Chem., 49, 210-215 https://doi.org/10.1021/jf000745o
  9. Chanvitayapongs, S., Draczynska-Lusiak, B. and Sun, A.Y. (1997) Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. Neuroreport, 14, 1499-1502
  10. Pace-Asciak, C.R., Hahn, S., Diamandis, E.P., Soleas, G. and Goldberg, D.M. (1995) The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clinica. Chimica. Acta., 235, 207-219 https://doi.org/10.1016/0009-8981(95)06045-1
  11. Jang, M., Cai, L., Udeani, G.O., Sloing, K.V., Thomas, C.F., Beecher, C.W., Fong, H.H., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., Moon, R.C. and Pezzuto, J.M. (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 10, 218-220
  12. Kim, Y.A., Lim, S.Y., Lee, S.H., Park, K.Y., Lee, W.H. and Choi, Y.H. (2004) Induction of Cdk inhibitor p21 and inhibition of cyclooxygenase-2 by resveratrol in human lung carcinoma A549 cells. J. Life Sci., 14, 800-808 https://doi.org/10.5352/JLS.2004.14.5.800
  13. Paul, S., Rimando, A.M., Lee, H.J., Ji, Y., Reddy, B.S. and Suh, N. (2009) Anti-inflammatory action of pterostilbene is mediated through the p38 mitogenactivated protein kinase pathway in colon cancer cells. Cancer Prev. Res., 2, 650-659 https://doi.org/10.1158/1940-6207.CAPR-08-0224
  14. Lee, S.E., Park, C.H., Bang, J.K., Seong, N.S. and Chung, T.Y. (2004) Comparison on antioxidant potential of several peanut varieties. J. Korean Soc. Food Sci. Nutr., 33, 941-945 https://doi.org/10.3746/jkfn.2004.33.6.941
  15. Gyeongsangnamdo Agricultural Research and Extension Service (GARES). Production and Marketing Information. Avabile online: http://www. knrda. go. kr
  16. Wang, K.H., Lai, Y.H., Chang, J.C., Ko, T.F., Shyu, S.L. and Chiou, R.Y. (2005) Germination of peanut kernels to enhance resveratrol biosynthesis and prepare sprouts as a functional vegetable. J. Agric. Food Chem., 53, 242-246 https://doi.org/10.1021/jf048804b
  17. A.O.A.C. (1990) Official Methods of Analysis. 15th ed., Association of Official Analytical Chemists, Washington, D.C.
  18. Ryu, K.Y., Shim, S.L., Kim, W., Jung, M.S., Hwang, I.M., Kim, J.H., Hong, C.H., Jung, C.H. and Kim, K.S. (2009) Analysis of the seasonal change of the proximate composition and taste components in the Conger Eels (Conger myriaster). J. Korean Soc. Food Sci. Nutr., 38, 1069-1075 https://doi.org/10.3746/jkfn.2009.38.8.1069
  19. Folch, J.M., Lee, S.M. and Stranley, G.H.S. (1957) A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem., 226, 497-509
  20. Lee, N.R. and Choi, S.J. (2009) Contents of resveratrol in different parts of various grape cultivars. Korean J. Food Preserv., 16, 959-964
  21. Lee, M.J., Cheong, Y.K., Kim, H.S., Park, K.H., Doo, H.S. and Suh, D.Y. (2003) trans-Resveratrol content of varieties and growth period in peanut. Korean J. Crop Sci., 48, 429-433
  22. Cho, G.S. (1993) Chemical compositions in the various plant types of peanut(Arachis hypogaea L.). J. Korean Soc. Food Nutr., 22, 576-580
  23. Choi, B.H., Hong, B.H., Kang, K.H., Kim, J.K. and Kim, S.H. (1996) New seed learning. Hyangmunsa, Seoul, Korea
  24. Cho, B.M., Yoon, S.K. and Kim, W.J. (1985) Changes in amino acid and fatty acids composition during germination of rapeseed. Korean J. Food Sci. Technol., 17, 371-376
  25. Lee, B.W. (2003) Comparison of physicochemical properties of peanuts and changes during storages. Master's degree thesis. Yonsei University
  26. Choi, K.S. and Kim, Z.U. (1985) Changes in lipid components during germination of mungbean. Korean J. Food Sci. Technol., 17, 271-275
  27. Kim, H.K. and Chung, D.S. (1998) Changes of major components during germination of seasame seeds. Korean J. Life Sci., 8, 137-144