DOI QR코드

DOI QR Code

A New Stationary Phase Prepared from Ground Silica Monolith Particles by Reversible Addition-Fragmentation Chain Transfer Polymerization

  • Lee, Seung-Mi (Department of Chemistry, Nano Fine Center, and Institute of Basic Research, Inha University) ;
  • Zaidi, Shabi Abbas (Department of Chemistry, Nano Fine Center, and Institute of Basic Research, Inha University) ;
  • Cheong, Won-Jo (Department of Chemistry, Nano Fine Center, and Institute of Basic Research, Inha University)
  • Received : 2010.07.19
  • Accepted : 2010.08.31
  • Published : 2010.10.20

Abstract

Silica monolith powders were prepared by a new procedure where ground powders of proper size distribution were obtained without sieving. An initiator was attached to this ground monolith and polystyrene was bound by reversible addition-fragmentation chain transfer polymerization to give a new stationary phase. The separation efficiency of this phase was found better than that of the polystyrene bound phase based on conventional silica particles and that of the C18 bound silica monolith powders.

Keywords

References

  1. Rahman, M. M.; Czaun, M.; Takafuji, M.; Ihara, H. Chem. Eur. J. 2008, 14, 1312-1321. https://doi.org/10.1002/chem.200701302
  2. Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Annaka, M.; Kanazawa, H.; Okano, T. Langmuir 2008, 24, 10981-10987. https://doi.org/10.1021/la801949w
  3. Idota, N.; Kikuchi, A.; Kobayashi, J.; Akiyama, Y.; Sakai, K.; Okano, T. Langmuir 2006, 22, 425-430. https://doi.org/10.1021/la051968h
  4. Coad, B. R.; Steels, B. M.; Kizhakkedathu, J. N.; Brooks, D. E.; Haynes, C. A. Biotechnol. Bioengineer. 2007, 97, 574-587. https://doi.org/10.1002/bit.21283
  5. Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Okano, T. Langmuir 2008, 24, 511-517. https://doi.org/10.1021/la701839s
  6. Mallik, A. K.; Rahman, M. M.; Czaun, M.; Takafuji, M.; Ihara, H. J. Chromatogr. A 2008, 1187, 119-127. https://doi.org/10.1016/j.chroma.2008.02.011
  7. Hemstrom, P.; Szumski, M.; Irgum, K. Anal. Chem. 2006, 78, 7098-7103. https://doi.org/10.1021/ac0602874
  8. Miller, M. D.; Baker, G. L.; Bruening, M. L. J. Chromatogr. A 2004, 1044, 323-330. https://doi.org/10.1016/j.chroma.2004.04.071
  9. Yoshikawa, C.; Goto, A.; Tsujii, Y.; Ishizuka, N.; Nakanishi, K.; Fukuda, T. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 4795-4803. https://doi.org/10.1002/pola.22224
  10. Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Okano, T. Biomacromolecules 2008, 9, 1340-1347. https://doi.org/10.1021/bm701427m
  11. Derouet, D.; Thuc, C. N. H. J. Appl. Polym. Sci. 2008, 109, 2113-2127. https://doi.org/10.1002/app.28290
  12. Fairhurst, R. E.; Chassaing, C.; Venn, R. F.; Mayes, A. G. Biosensors and Bioelectronics 2004, 20, 1098-1105. https://doi.org/10.1016/j.bios.2004.01.020
  13. Sulitzky, C.; Ruckert, B.; Hall, A. J.; Lanza, F.; Unger, K.; Sellergren, B. Macromolecules 2002, 35, 79-91. https://doi.org/10.1021/ma011303w
  14. Roohi, F.; Titirici, M. M. New J. Chem. 2008, 32, 1409-1414. https://doi.org/10.1039/b800851e
  15. Su, S.; Zhang, M.; Li, B.; Zhang, H.; Dong, X. Talanta 2008, 76, 1141-1146. https://doi.org/10.1016/j.talanta.2008.05.015
  16. Czaun, M.; Rahman, M. M.; Takafuji, M.; Ihara, H. Polymer 2008, 49, 5410-5416. https://doi.org/10.1016/j.polymer.2008.10.017
  17. Unsal, E.; Elmas, B.; Caglayan, B.; Tuncel, M.; Patir, S.; Tuncel, A. Anal. Chem. 2006, 78, 5868-5875. https://doi.org/10.1021/ac060506l
  18. Coessens, V.; Pintauer, T.; Matyjaszewski, K. Prog. Polym. Sci. 2001, 26, 337-377. https://doi.org/10.1016/S0079-6700(01)00003-X
  19. Qiu, K.; Li, P. Chinese J. Polym. Sci. 2004, 22, 99-110.
  20. Favier, A.; Charreyre, M. Macromol. Rapid Comm. 2006, 27, 653-692. https://doi.org/10.1002/marc.200500839
  21. Perrier, S.; Takolpuckdee, P. J. Polym. Sci. Pt. A: Polym. Chem. 2005, 43, 5347-5393. https://doi.org/10.1002/pola.20986
  22. Kim, S. S.; Cheong, W. J. Bull. Korean Chem. Soc. 2009, 30, 722-725. https://doi.org/10.5012/bkcs.2009.30.3.722
  23. Hwang, D. G.; Zaidi, S. A.; Cheong, W. J. Bull. Korean Chem. Soc. 2009, 30, 3127-3130. https://doi.org/10.5012/bkcs.2009.30.12.3127
  24. Hwang, D. G.; Zaidi, S. A.; Cheong, W. J. J. Sep. Sci. 2010, 33, 587-593. https://doi.org/10.1002/jssc.200900578
  25. Ko, J. H.; Baik, Y. S.; Park, S. T.; Cheong, W. J. J. Chromatogr. A 2007, 1144, 269-274. https://doi.org/10.1016/j.chroma.2007.01.086
  26. Han, K. M.; Cheong, W. J. Bull. Korean Chem. Soc. 2008, 29, 2281-2283. https://doi.org/10.5012/bkcs.2008.29.11.2281

Cited by

  1. Ground Organic Monolith Particles Having a Large Volume of Macropores as Chromatographic Separation Media vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.2033
  2. -bound porous silica monolith particles as a low-cost high-performance liquid chromatography stationary phase with an excellent chromatographic performance vol.37, pp.23, 2014, https://doi.org/10.1002/jssc.201400811
  3. Cheap C18-modified Silica Monolith Particles as HPLC Stationary Phase of Good Separation Efficiency vol.36, pp.6, 2015, https://doi.org/10.1002/bkcs.10320
  4. Production of Raw and Ligand-modified Silica Monolith Particles in an Enhanced Scale and their Application in High Performance Liquid Chromatography vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11203
  5. Ground Organic Monolith Particles as Chromatographic Separation Media vol.34, pp.1, 2010, https://doi.org/10.5012/bkcs.2013.34.1.291
  6. Immobilization of Styrene-acrylamide Co-polymer on Either Silica Particles or Inner Surface of Silica Capillary for the Separation of D-Glucose Anomers vol.35, pp.2, 2010, https://doi.org/10.5012/bkcs.2014.35.2.539
  7. Porous Silica Particles As Chromatographic Separation Media: A Review vol.35, pp.12, 2010, https://doi.org/10.5012/bkcs.2014.35.12.3465
  8. Styrene‐N‐phenylacrylamide co‐polymer modified silica monolith particles with an optimized mixing ratio of monomers as a new stationary phase for the separation of peptides in high p vol.42, pp.16, 2010, https://doi.org/10.1002/jssc.201900215
  9. An optimized mixed‐mode stationary phase based on silica monolith particles for the separation of peptides and proteins in high‐performance liquid chromatography vol.42, pp.24, 2010, https://doi.org/10.1002/jssc.201900914
  10. Ground Organic Particles of ca. 3 μm Size as Chromatographic Separation Media in High Performance Liquid Chromatography vol.83, pp.6, 2010, https://doi.org/10.1007/s10337-020-03894-z