DOI QR코드

DOI QR Code

Experimental Studies of Controller Design for a Car-like Balancing Robot with a Variable Mass

무게 변화에 따른 차륜형 밸런싱 로봇의 제어기 설계 및 실험연구

  • 김현욱 (지능 시스템 및 감성공학 실험실 충남대학교 메카트로닉스공학과) ;
  • 정슬 (지능 시스템 및 감성공학 실험실 충남대학교 메카트로닉스공학과)
  • Received : 2010.04.15
  • Accepted : 2010.07.30
  • Published : 2010.08.25

Abstract

This paper presents controller design of a two wheeled mobile inverted pendulum robot for one man transportation vehicle. Since the overall mass is varying with different drivers, suitable controller gains are obtained through experimental studies. Variation of the center of gravity due to different masses also affects stable balancing control. Thus, the desired balancing angle si required to be modified with respect to different masses. To measure masses for different drivers, a weight scale is used and those data are used for balancing control through communication. The gain scheduling method of using data obtained from experimental studies allows the robot to have stable balancing performances.

본 논문에서는 두 바퀴로 구동되는 역진자기반의 1인승 차량의 안정적인 균형을 위해 제어기를 설계하였다. 탑승자의 몸무게에 따라 전체 질량이 달라지므로 그에 따른 PID 제어기의 이득값을 실험적으로 구하였다. 이 때 탑승자의 몸무게에 따라 무게 중심이 달라지게 되는데, 이는 밸런싱 각도에 영향을 미치게 된다. 따라서, 안정적인 균형을 이루기 위해서는 몸무게에 따른 목표 밸런싱 각도를 수정하여 제어해야 한다. 다양한 탑승자의 몸무게를 측정하기 위해 차량에 체중계를 달고 측정된 체중 데이터를 컴퓨터로 전송하여 제어기에 적용하였다. 다양한 실험으로 얻은 정보를 사용하여 제어기의 게인 스케줄링을 통하여 보다 안정적인 균형을 유지할 수 있었다.

Keywords

References

  1. “Segway”, http://www.segway.com
  2. F. Grasser, A. D’Arrigo, S. Colmbi, and Alfred C. Rufer, “JOE: A Mobile, Inverted Pendulum”, IEEE Trans. on Industrial Electronics, vol. 49, no. 1, pp.107-114, 2002 https://doi.org/10.1109/41.982254
  3. K. Pathak, J. Franch, and S. K. Agrawal, “Velocity Control of a Wheeled Inverted Pendulum by Partial Feedback Linearization”, IEEE Conference on Decision and Control, pp.3962-3967, 2004
  4. S. H. Jeong and T. Takahashi, “Wheeled Inverted Pendulum Type Assistant Robot : Inverted Mobile, and Sitting Motion”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1932-1937, 2007
  5. S. M. Boskovich, “A Two wheeled Robot Control system”, IEEE WESCON 1995
  6. J. S. Noh, G. H. Lee, and S. Jung , “Position Control of a Mobile Inverted Pendulum System Using Radial Basis Function Network”, International Journal of Control, Robot, and Systems, vol.8,no.1, pp.157-162, 2010
  7. R. Imaumra, T. Takei, and S. Yuta, “Sensor Drift Compensation and Control of a Wheeled Inverted Pendulum Mobile Robot”, Advance Motion Control, IEEE International Workshop on Motion Control, pp.137-142, 2008
  8. Hyungjik Lee, Ho Jin Choi, Jun Hyung Park, Jong Hyun Lee, and Seul Jung , "Center of Gravity Based Control of a Humanoid Balancing Robot for Boxing Games : BalBot V", ICCAS, pp. 124-128, 2009
  9. “PUMA”, http://www.segway.com
  10. 이형직, 정슬, “밸런싱 메커니즘을 이용한 이륜형 자동차 형태의 이동로봇 개발 : BalBOT VII”, 로봇학회, vol.4, no.4, pp. 289-297, 2009
  11. 김현욱, 정슬, “다양한 탐승자에 대한 차륜형 밸런싱 로봇의 실험적 연구”, 지능시스템 춘계 학술대회, pp. 142-143, 2010

Cited by

  1. Implementation of Balancing Control System for Two Wheeled Inverted Pendulum Robot vol.16, pp.3, 2012, https://doi.org/10.6109/jkiice.2012.16.3.432
  2. A Derivation of the Equilibrium Point for a Controller of a Wheeled Inverted Pendulum with Changing Its Center of Gravity vol.18, pp.5, 2012, https://doi.org/10.5302/J.ICROS.2012.18.5.496
  3. An Experimental Study on Balancing Stabilization of a Service Robot by Using Sliding Mechanism vol.19, pp.3, 2013, https://doi.org/10.5302/J.ICROS.2013.12.1768
  4. Design of a Two-wheeled Balancing Mobile Platform with Tilting Motion vol.20, pp.1, 2014, https://doi.org/10.5302/J.ICROS.2014.13.1962
  5. Implementation and Balancing Control of a Robotic Vehicle for Entertainment vol.20, pp.7, 2014, https://doi.org/10.5302/J.ICROS.2014.13.8012
  6. Balancing and Driving Control of a Mecanum Wheel Ball Robot vol.21, pp.4, 2015, https://doi.org/10.5302/J.ICROS.2015.14.0127
  7. Experimental Studies on Bouncing and Driving Control of a Robotic Vehicle for Entertainment and Transportation vol.25, pp.3, 2015, https://doi.org/10.5391/JKIIS.2015.25.3.266
  8. Experimental Setup for Autonomous Navigation of Robotic Vehicle for University Campus vol.26, pp.2, 2016, https://doi.org/10.5391/JKIIS.2016.26.2.105