The Distribution and Geomorphic Change of Debris Slope at Ongjeom-ri in Cheongsong-gun

청송군 옹점리 일대 암설 사면의 분포와 지형 변화

  • Lee, Gwang-Ryul (Department of Geography Education, Teachers College, Kyungpook National University) ;
  • Park, Han-San (Korea Ocean Research & Development Institute)
  • Received : 2010.04.13
  • Accepted : 2010.05.12
  • Published : 2010.06.30

Abstract

The distributions, factors, and vegetation covers of debris slopes and changes of debris at the eastern Ongjeom-ri, Cheongsong-gun are analyzed. The important factors influencing on the developments of the slopes are felsites having advantages to the developments of cliffs and supply of enough debris, and the relatively long days below zero temperatures promoting the physical weathering processes. The distributional areas of the slopes at southern and western slopes are more extensive than those of northern and eastern slopes due to the active water evaporation by high insolation. The Ga area at eastern Ongjeom-ri has experienced the steady decreases of area of the slopes due to the vegetation covers and shows the increasing rates of vegetation covers of $431.0m^2/yr$ as averaged values. However, it is estimated at the Na area using terrestrial LIDAR that 1 or 2 debris were moved or displaed per year in slope.

본 연구는 옹점리 동부의 암설 사면을 대상으로 암설 사면의 분포, 요인, 식생 피복 및 암설 변화에 대해 분석하였다. 이 지역에서 암설 사면 발달의 중요한 요인은 기반암이 단애 형성과 암설 공급에 유리한 규장암이라는 점과 기계적 풍화작용을 촉진시키는 기온의 영하일수가 비교적 길다는 점이다. 암설 사면의 분포 면적은 일사량이 높아서 수분 증발이 활발하여 식생 피복이 불량한, 남사면과 서사면이 북사면과 동사면에 비해 더 넓은 것으로 나타났다. 옹점리 동부의 가 지역에서 식생 피복으로 인해 암설 사면의 면적은 꾸준히 감소하고 있으며, 평균 $431.0m^2/yr$의 식생 피복 면적 증가 속도를 보였다. 그리고 지상라이다를 이용하여 분석한 결과, 나 지역에서는 1년 동안 1~2개의 암설 입자들이 사면 내에서 변위 또는 이동되었다.

Keywords

References

  1. Aguado, E. and Burt, J. E., 2006, Understanding Weather and Climate, Prentice Hall, Upper Saddle River.
  2. Curry, A. M. and Morris, C. J., 2004, Lateglacial and Holocene talus slope development and rockwall retreat on Mynydd Du, UK, Geomorphology, 58, 85-106.
  3. Curry, A. M., 1999, Paraglacial modification of slope form, Earth Surface Processes and Landforms, 24(13), 1213-1228. https://doi.org/10.1002/(SICI)1096-9837(199912)24:13<1213::AID-ESP32>3.0.CO;2-B
  4. Jeon, Y. G., 1993, The study on the debris slope landform in the southern Taebaek mountains, Geography, 28(2), 77-98 (in Korean).
  5. Jeon, Y. G., 1996, The formation and geomorphic development of Chon-hwang-san(Mt.) Talus, Journal of the Korean Association of Regional Geographers, 2(2), 173-182 (in Korean).
  6. Jeon, Y. G., 1997, Geomorphic features of orumkol(frozen valley) area (Kyungnam Province, South Korea): Mainly about talus, Journal of the Korean Association of Regional Geographers, 3(1), 165-182 (in Korean).
  7. Jeon, Y. G., 1998, Geomorphic features of Bing-gye valley area (Kyongbuk Province, South Korea): Mainly about talus, Journal of the Korean Association of Regional Geographers, 4(2), 49-64(in Korean).
  8. Kwon, H. J., 2006, Geomorphology, Bobmunsa, Seoul (권혁재, 2006, 지형학, 법문사, 서울).
  9. Lee, H. G. and Hong, S. H., 1973, Expalnatory Text of the Geological Map of Cheong Song Sheet, Geological and Mineral Institute of Korea (이홍규.홍승호, 1973, 지질도폭 설명서 - 청송 1:50,000, 국립 지질 광물연구소).
  10. Matsuoka, N. and Sakai, H. 1999, Rockfall activity from an alpine cliff during thawing periods, Geomorphology, 28, 309-328. https://doi.org/10.1016/S0169-555X(98)00116-0
  11. Matsuoka, N., 2008, Frost weathering and rockwall erosion in the southeastern Swiss Alps: Longterm (1994-2006) observations, Geomorphology, 99, 353-368. https://doi.org/10.1016/j.geomorph.2007.11.013
  12. Oguchi, T. and Oguchi, C. T., 2004, Late Quaternary rapid talus dissection and debris flow deposition on an alluvial fan in Syria, CATENA, 55(2), 125-140. https://doi.org/10.1016/S0341-8162(03)00112-7
  13. Park, K., 2000, Morphology and genesis of block fields on the Seoraksan National Park in Kangwon province, Korea, Journal of the Korean Geographical Society, 35(5), 653-663.
  14. Park, K., 2003, Blockfields of Seoraksan National Park: Age and origin, Journal of the Korean Geographical Society, 38(6), 922-934.
  15. Pesci, A., Loddo, F., and Conforti, D., 2007, The first terrestrial laser scanner application over Vesuvius: High resolution model of a volcano crater, International Journal of Remote Sensing, 28(1), 203-219. https://doi.org/10.1080/01431160500534473
  16. Ritter, D. F., Kochel, R. C., and Miller, J. R, 1995, Process Geomorphology, Wm. C. Brown Publishers. Long Grove.
  17. Selby, M. J., 1993, Hillslope Materials and Processes, Oxford University Press, Oxford.
  18. Seong, Y. B. and Kim, J. W., 2003, Application of in-situ produced cosmogenic 10Be and 26Al for estimating erosion rate and exposure age of Tor and Block Stream Detritus: Case Study from Mt. Maneo, South Korea, Journal of the Korean Geographical Society, 38(3), 389-399.
  19. Summerfield, M. A., 1991, Global Geomorphology, Pearson Education, Singapore.
  20. Teza, G., Galgaro, A., Zaltron, N., and Genevois, R., 2007, Terrestrial laser scanner to detect landslide displacement fields: A new approach, International Journal of Remote Sensing, 28(16), 3425-3446. https://doi.org/10.1080/01431160601024234