DOI QR코드

DOI QR Code

Seismic Analysis of Tunnel in Transverse Direction Part II: Evaluation of Seismic Tunnel Response via Dynamic Analysis

터널 횡방향 지진해석 Part II: 동적해석을 통한 터널의 지진응답 예측

  • 박두희 (한양대학교 건설환경공학과) ;
  • 신종호 (한양대학교 건설환경공학과) ;
  • 윤세웅 (한양대학교 건설환경공학과)
  • Received : 2010.05.10
  • Accepted : 2010.06.28
  • Published : 2010.06.30

Abstract

Dynamic analyses of tunnels are widely performed in practice in Korea. Accurate performance of a dynamic analysis is very difficult, requiring appropriate application of lower and lateral boundary conditions, deconvolution, constitutive model, and selection of dynamic soil properties etc. Lack of a systematic guideline on how to perform the dynamic analysis makes it even more difficult to perform an analysis. In addition, dynamic analyses are not needed in most cases and pseudo-static analyses are more than adequate. However, they are performed without a clear understanding on the need for the dynamic analysis and differences between the two methods. In this study, firstly, a guideline for correctly performing a 2D dynamic analysis is developed. Secondly, the differences in the tunnel responses using dynamic and pseudo-static analyses are discussed and compared. The results show that the discrepancies between the dynamic and static analyses are not significant for most cases. It is therefore recommended that the dynamic analyses be performed at tunnel portal, very soft ground, or in cases where spatial variation of the ground motion needs to be considered in the seismic analysis of tunnels in transverse direction.

터널의 동적 지진해석은 실무에서 널리 수행되고 있다. 동적해석은 하부 및 측면 경계 조건, Deconvolution, 구성모형, 동적 물성치 등을 적용 또는 결정하기 어려워서 해석 수행 시 주의해야 하지만 이에 대한 명확한 가이드라인이 제시된 바 없다. 또한 많은 경우에는 터널의 동적해석 자체가 필요없지만 이에 대한 필요성과 정적해석과의 차이에 대한 이해 없이 무분별하게 사용되고 있는 실정이다. 본 논문에서는 일차적으로 2차원 동적 해석을 올바르게 수행하기 위한 가이드라인을 제시하였다. 이차적으로는 제시된 가이드라인을 준수한 2차원 동적해석을 수행하였으며 해석결과를 응답변위법을 비교하였다. 응답변위법과 동적해석을 비교한 결과, 두 해석기법간의 차이는 크지 않은 것으로 나타났다. 즉, 터널 갱구부, 초연약지반, 또는 공간적 변이성을 고려해야 하는 경우를 제외하고는 터널의 횡방향 지진해석은 응답변위법으로도 충분히 정확하게 터널의 응답을 예측할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

Grant : 해저시설물 차폐기술연구

References

  1. 이홍성, 윤세웅, 박두희, 김인태 (2008), "Estimation of Nonlinear Site Effects of Soil Profiles in Korea", 한국지반공학회 논문집, 제24권, 3호, pp.1-11.
  2. 일본도로협회 (1996), 도로교시방서.
  3. 한국도로교통협회 (2000), 도로교설계기준, 건설정보사, p.1-474.
  4. 한국지반공학회 (2006), 지반구조물의 내진설계, 한국지반공학회, p.1-655.
  5. 한국지반공학회 (2010), 상호검증을 통한 지진 지반응답해석 이해.
  6. Amorosi, A., and Boldini, D. (2009), "Numerical modelling of the transverse dynamic behaviour of circular tunnels in clayey soils", Soil Dynamics and Earthquake Engineering, Vol.29, No.6, pp. 1059-1072. https://doi.org/10.1016/j.soildyn.2008.12.004
  7. Borja, R.D., Duvernay, B.G., and Lin, C.H. (2002), "Ground response in Lotung: Total stress analyses and parametric studies", Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.1, pp.54-63. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(54)
  8. Gil, L., Hernandez, E., and De la Fuente, P. (2001), "Simplified transverse seismic analysis of buried structures", Soil Dynamics and Earthquake Engineering, Vol.21, No.8, pp.735-740. https://doi.org/10.1016/S0267-7261(01)00039-2
  9. Hashash, Y.M.A., and Park, D. (2002), "Viscous damping formulation and high frequency motion propagation in non-linear site response analysis", Soil Dynamics and Earthquake Engineering, Vol.22, No.7, pp.611-624. https://doi.org/10.1016/S0267-7261(02)00042-8
  10. Hashash, Y.M.A., Tseng, W.S., and Krimotat, A. (1998), "Seismic soil-structure interaction analysis for immersed tube tunnels retrofit", Geotechnical Earthquake Engineering and Soil Mechanics III, Vol.2, pp.1380-1391.
  11. Hibbitt, K. (2001), ABAQUS/Standard: User's manual, Hibbitt, Karlsson & Sorensen.
  12. Hudson, M., Idriss, I.M., and Beikae, M. (1994), "QUAD4M - A computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base", Davis, CA: Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA.
  13. Imai, T., and Tonouchi, K. (1982), "Correlation of N-value with S-wave velocity and shear modulus", Vol., pp.24-27.
  14. Itasca (2008), "FLAC (Fast Lagrangian Analyses of Continua) v. 6.0", Ontario, Canada.
  15. Joyner, W.B., and Chen, A.T.F. (1975), "Calculation of non-linear ground response in earthquakes", Bulletin of the Seismological Society of America, Vol.65, pp.1315-1336.
  16. Konder, R.L., and Zelasko, J.S. (1963), "Hyperbolic stress-strain formulation of sands", Second pan American Conference on Soil Mechanics and Foundation Engineering, Sao Paulo, Brazil, Vol., pp.289-324.
  17. Kwok, A.O.L., Asce, M., Stewart, J.P., Hashash, Y.M.A., Matasovic, N., Pyke, R., Wang, Z., and Yang, Z. (2007), "Use of Exact Solutions of Wave Propagation Problems to Guide Implementation of Nonlinear Seismic Ground Response Analysis Procedures", Journal of Geotechnical and Geoenvironmental Engineering, Vol.133, p.1385. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1385)
  18. Lysmer, J., and Kuhlemeyer, R. (1969), "Finite element model for infinite media", Journal of Engineering Mechanics Division. ASCE, Vol.95, pp.859-877.
  19. Lysmer, J., Udaka, T., Tsai, C.F., and Seed, H.B. (1975), FLUSH: A computer program for approximate 3-D analysis of soil-structure interaction problems, EERC 75-30, Earthquake Engineering Research Center.
  20. Lysmer, J., and Waas, G. (1972), "Shear waves in plane infinite structures", Journal of the Engineering Mechanics Division, Vol.98, No.1, pp.85-105.
  21. Matasovic, N., and Vucetic, M. (1995), "Seismic response of soil deposits composed of fully-saturated clay and sand layers", First International Conference on Earthquake Geotechnical Engineering, Tokyo, Japan: JGS, Vol.1, pp.611-616.
  22. Mazzoni, S., McKenna, F., and Fenves, G. (2005), "OpenSees command language manual", Pacific Earthquake Engineering Research (PEER) Center.
  23. Park, D., and Hashash, Y.M.A. (2004), "Soil damping formulation in nonlinear time domain site response analysis", Journal of Earthquake Engineering, Vol.8, No.2, pp.249-274.
  24. Park, D., Sagong, M., Kwak, D.-Y., and Jeong, C.-G. (2009), "Simulation of tunnel response under spatially varying ground motion", Soil Dynamics and Earthquake Engineering, Vol.29, No.11-12, pp.1417-1424. https://doi.org/10.1016/j.soildyn.2009.05.005
  25. PLAXIS-B.V. (2002), "PLAXIS: Finite element Package for analysis of geotechnical structures", Delft, Netherland.
  26. Prevost, J.H. (1998), DYNAFLOW User's Manual, Department of Civil Engineering and Operations Research, Princeton University.
  27. Seed, H.B., and Idriss, I.M. (1970), Soil moduli and damping factors for dynamic response analyses, College of Engineering University of California Berkeley., Berkeley, pp.41.
  28. Wang, J.N. (1993), "Seismic Design of Tunnels: A State-of-the-Art Approach", Monograph 7. New York, NY: Parsons Brinckerhoff Quade & Douglas, Inc.
  29. White, W., Lee, I., and Valliappan, S. (1977), "Unified boundary for finite dynamic models", Journal of the Engineering Mechanics Division, Vol.103, No.5, pp.949-964.
  30. Yang, D., Naesgaard, E., Byrne, P., Adalier, K., and Abdoun, T. (2004), "Numerical model verification and calibration of George Massey Tunnel using centrifuge models", Canadian geotechnical journal, Vol.41, No.5, pp.921-942. https://doi.org/10.1139/t04-039