DOI QR코드

DOI QR Code

A Study of the Etched ZnO Thin Films Surface by Reactive Ion in the Cl2/BCl3/Ar Plasma

Cl2/BCl3/Ar 플라즈마에서 반응성 이온들에 의해 식각된 ZnO 박막 표면 연구

  • Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 우종창 (중앙대학교 전자전기공학부) ;
  • 김창일 (중앙대학교 전자전기공학부)
  • Received : 2010.07.05
  • Accepted : 2010.09.20
  • Published : 2010.10.01

Abstract

In the study, the characteristics of the etched Zinc oxide (ZnO) thin films surface, the etch rate of ZnO thin film in $Cl_2/BCl_3/Ar$ plasma was investigated. The maximum ZnO etch rate of 53 nm/min was obtained for $Cl_2/BCl_3/Ar$=3:16:4 sccm gas mixture. According to the x-ray diffraction (XRD) and atomic force microscopy (AFM), the etched ZnO thin film was investigated to the chemical reaction of the ZnO surface in $Cl_2/BCl_3/Ar$ plasma. The field emission auger electron spectroscopy (FE-AES) analysis showed an elemental analysis from the etched surfaces. According to the etching time, the ZnO thin film of etched was obtained to The AES depth-profile analysis. We used to atomic force microscopy to determine the roughness of the surface. So, the root mean square of ZnO thin film was 17.02 in $Cl_2/BCl_3/Ar$ plasma. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the plasmas.

Keywords

References

  1. D. C. Reynold, D. C. Look, B. Jogai, and H. Morko, Solid State Commun. 101, 643 (1997). https://doi.org/10.1016/S0038-1098(96)00697-7
  2. S. Bethke, H. Pan, and B. W. Wessels, Appl. Phys. Lett. 52, 138 (1998).
  3. D. C. Reynolds, D. C. Look, B. Jogai, J. V. Nostrand, R. Ones, and J. Jenny, Solid State Commun. 106, 701 (1998). https://doi.org/10.1016/S0038-1098(98)00048-9
  4. K. K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S. J. Park, and J. H. Song, J. Appl. Phys. 87, 3573 (2000). https://doi.org/10.1063/1.372383
  5. R. Groenen, M. Creatore, and M. C. M. van de Sanden, Appl. Surf. Sci. 241, 321 (2005). https://doi.org/10.1016/j.apsusc.2004.07.034
  6. K. C. Lee and C. Lee, Trans. KIEE 3, 241 (2003).
  7. J. C. Woo and C. I. Kim, Trans. Electr. Electron. Mater. 11, 116 (2010). https://doi.org/10.4313/TEEM.2010.11.3.116
  8. R. M. Todi, K. B. Sundaram, A. P. Warren, and K. Scammon, Solid-State Electron. 50, 1189 (2006). https://doi.org/10.1016/j.sse.2006.06.021
  9. D. P. Kim, J. W. Yeo, and C. I. Kim, Thin Solid Films 459, 76 (2004). https://doi.org/10.1016/j.tsf.2003.12.101
  10. S. M. Gu, D. P. Kim, K. T. Kim, and C. I. Kim, Thin Solid Films 475, 313 (2005). https://doi.org/10.1016/j.tsf.2004.08.037
  11. B. J. Lee, H. S. Chung, and K. S. Lee, Trans. KIEE 51, 111 (2002).