Synthesis and optical properties of star-like ZnO nanostructures grown on with carbon catalyst

탄소 촉매에 의하여 성장된 별-모양 ZnO 나노 구조물의 합성과 광학적 특성

  • 정일현 (단국대학교 공과대학 화학공학과) ;
  • 채명식 (단국대학교 공과대학 화학공학과) ;
  • 이의암 (단국대학교 공과대학 화학공학과)
  • Received : 2010.04.07
  • Accepted : 2010.05.31
  • Published : 2010.06.30

Abstract

Star-like ZnO nanostructures were grown on SI(100) substrates with carbon(C) catalyst by employing vapor-solid(VS) mechanism. The morphologies and structure of ZnO nanostructures were investigated by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectrum, Photoluminescence spectrum. The results demonstrated that the as-synthesized products consisted of star-like ZnO nanostructure with hexagonal wurtzite phase. Nanostructures grown at 1100 were mainly star-like in structure with diameters of 500 nm. The legs of the star-like nanostructures were preferentially grown up along the [0001] direction. A vapor.solid (VS) growth mechanism was proposed to explain the formation of the star-like structures. Photoluminescence spectrum exhibited a narrow emission band peak around 380 nm and a broad one around 491 nm. Raman spectrum of the ZnO nanostructures showed oxygen defects in ZnO nanostructures due to the existence of Ar gas during the growth process, leading to the dominant green band peak in the PL spectrum.

Keywords

References

  1. Chen Y, Bagnall DM, Koh HJ, Park KT, Hiraga K, Zhu Z, et al. J Appl Phys,.84 ,3912(1988).
  2. Yuri Choi, Il Hyun Jung. J.Korean Ind.Eng.Chem,.20,617(2009).
  3. Huang MH, Mao S, Feick H, Yan H, Wu y, Kind H, et al. Science.,292,1897(2001). https://doi.org/10.1126/science.1060367
  4. Chang CY, Tsao FC, Pan CJ, Chi GC, Ren F, Norton DP, et al, Appl Phys Lett,. 88,173(2006).
  5. T. Aoki, Y. Hatanaka, D.C. Look, Appl. Phys. Lett,. 76,3257 (2000). https://doi.org/10.1063/1.126599
  6. H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. 14,158(2002) https://doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
  7. J.D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, L. Fernandez-Romero, T. Andreu, A. Cirera, A. Romano-Rodriguez, A. Cornet, J.R. Morante, S. Barth, S. Mathur, J. Phys. Chem. C. 112, 14639 (2008). https://doi.org/10.1021/jp804614q
  8. C.N.R. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Prog. Solid State Chem. 31,5 (2003). https://doi.org/10.1016/j.progsolidstchem.2003.08.001
  9. S.Y. Li, C.Y. Lee, T.Y. Tseng, J. Cryst. Growth,. 247,357 (2003). https://doi.org/10.1016/S0022-0248(02)01918-8
  10. Y. Wang, L.D. Zhang, G.Z. Wang, X.S. Peng, Z.Q. Chu, C.H. Liang, J. Cryst. Growth,. 234,174,(2002) 17.
  11. X. Wang, C.J. Summer, Z.L. Wong, Nano Lett,. 4,423,(2004). https://doi.org/10.1021/nl035102c
  12. C. Xu, Z. Liu, S. Liu, G. Wang, Scripta Mater. 48,1367,(2003). https://doi.org/10.1016/S1359-6462(02)00656-5
  13. Y.C. Wang, I.C. Leu, M.H. Hon, J. Cryst. Growth,. 239,564,(2002). https://doi.org/10.1016/S0022-0248(01)01984-4
  14. C.-H. Hong, W.-T. Whang, Mater. Chem. Phys,. 78,99.(2002).
  15. Wang ZL. J Phys Condens Matter,. 16, 183, (2004).
  16. Qiu YF, Yang SH. Adv Funct Mater,. 17, 184, (2007).
  17. Long T, Yin S, Tkabatake K, Zhnag P, Sato T. Nanoscale Res Lett,. 4, 185, (2009).
  18. Pu XG, Wang ZL. Appl Phys Lett, 84, 84, (2004).
  19. Lao JY, Huang JY, Wang DZ, Ren ZF. Nano Lett, 3, 187, (2003).
  20. Wang Z, Qian XF, Yin J, Zhu ZK. Langmuir. 20, 3441, (2004). https://doi.org/10.1021/la036098n
  21. C.Y. Lee, T.Y. Tseng, S.Y. Li, P. Lin, Tamkang J. Sci. Eng,. 6, 127, (2003).
  22. L. Zhang, R. Persual, T.E. Madey, Phys. Rev,. 56, 10549 (1997). https://doi.org/10.1103/PhysRevB.56.10549
  23. Sun XM, Chen X, Li YD. J Cryst Growth,. 244, 218, (2002).. https://doi.org/10.1016/S0022-0248(02)01652-4
  24. Zhiwei Peng, Guozhang Dai, Peng Chen, Qinglin Zhang, Qiang Wan, Bingsuo Zou. Materials Lett,.3, 10967, (2010).
  25. He FQ, Zhao YP. Appl Phys Lett,. 204,193113, (2006).
  26. Chen SJ, Wang GR, Liu YC. J Lumin,. 205,340, (2009).
  27. Fauteux C, Longtin R, Pegna J, Therriault D. Inorg Chem,. 46, 11036, (2007). https://doi.org/10.1021/ic700915z
  28. Wang RP, Xu G, Jin P. Phys Rev B,. 69, 113303, (2004). https://doi.org/10.1103/PhysRevB.69.113303
  29. Hsu NE, Hung WK, Chen YF. J Appl Phys,. 96, 4671, (2004). https://doi.org/10.1063/1.1787905