The Properties of the Nitrocellulose/MWCNT Composites Fabricated on the 10 ${\mu}m$ Polyimide Film for the Flexible Transparent Conduction Film

10 ${\mu}m$ 폴리이미드 기판에 성막된 플렉시블 투명 전도막용 Nitrocellulose/MWCNT 복합체의 제작 및 특성

  • Jang, Kyung-Uk (Department of the Electrical Engineering, Kyung Won University)
  • Received : 2010.06.02
  • Accepted : 2010.06.15
  • Published : 2010.06.30

Abstract

The composite films were fabricated by air-spray method under the 2 kgf/$cm^2$ pressure using the multi-walled CNTs solution and the nitrocellulose on a 10 ${\mu}m$ polyimide film substrates. We obtained the composite films which were sprayed with the MWCNT dispersion by varying the spray time from 20, 40 and 60sec. The electrical and the optical properties of the sandwiched-structure-composite thin films were investigated by an UV/VIS spectrometer and a Hall Effect equipment. As a result, the optical transmittance of all thin films in the visible range, as well as the electrical conductance shows an available value for the transparent electrode. The carrier concentration and the light transmittance rate for the fabricated sample are between $3.733{\times}10^{10}$ and $6.551{\times}10^{14}cm^{-3}$, around 35 to 95%, respectively.

Keywords

References

  1. Taik-Min Lee, Jae-Ho Noh, Chung Hwan Kim, Jeongdai Jo and Dong-Soo Kim, Thin Solid Films, Volume 518, Issue 12, 3355-3359 (2010). https://doi.org/10.1016/j.tsf.2009.10.017
  2. M. Fahland, P. Karlsson, C. Charton, Thin Solid Films, Volume 392, Issue 2, 334-337 (2001). https://doi.org/10.1016/S0040-6090(01)01053-7
  3. P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, Materials Chemistry and Physics, Vol. 113, Issues 2-3, 919 (2009). https://doi.org/10.1016/j.matchemphys.2008.08.065
  4. Z. Wu, Z.H. Chen, X. Du, J.M. Logan, J. Sippel and M. Nikolou, Science Vol. 305, 1273 (2004). https://doi.org/10.1126/science.1101243
  5. R. Philippe, B. Caussat, A. Falqui, Y. Kihn, P. Kalck, S. Bordere, D. Plee, P. Gaillard, D. Bernard and P. Serp, Journal of Catalysis, Vol. 263, Issue 2, 345( 2009). https://doi.org/10.1016/j.jcat.2009.02.027
  6. R.C. Warren, Polymer, Volume 29, Issue 5, 919 (1988). https://doi.org/10.1016/0032-3861(88)90155-3
  7. Su-Dong Park, Dong-Hee Han, Dayong Teng and Younghwan Kwon, Current Applied Physics, Volume 8, Issues 3-4, 482 (2008). https://doi.org/10.1016/j.cap.2007.10.062
  8. Yang Doo Lee, Jung-Wan Yu, Woo-Sung Cho, Yong Churl Kim, In Taek Han, Yun-Hi Lee and Byeong-Kwon Ju, Carbon, Volume 48, Issue 4, 1131 (2010). https://doi.org/10.1016/j.carbon.2009.11.035
  9. Santosh D. Wanjale and Jyoti P. Jog, Polymer, Volume 47, Issue 18, 6414 ( 2006). https://doi.org/10.1016/j.polymer.2006.07.011
  10. Wei Chen, Hongbin Lu and Steven R. Nutt, Composites Science and Technology, Volume 68, Issue 12, 2535 (2008). https://doi.org/10.1016/j.compscitech.2008.05.011
  11. Yongzheng Pan, Lin Li, Siew Hwa Chan and Jianhong Zhao, Composites Part A: Applied Science and Manufacturing, Volume 41, Issue 3, 419 (2010). https://doi.org/10.1016/j.compositesa.2009.11.009
  12. Juan Zhang, Mariko Mine, Dan Zhu and Masaru Matsuo, Carbon, Volume 47, Issue 5, 1311 (2009). https://doi.org/10.1016/j.carbon.2009.01.014
  13. Mohammed H. Al-Saleh and Uttandaraman Sundararaj, Carbon, Volume 47, Issue 7, 1738 (2009). https://doi.org/10.1016/j.carbon.2009.02.030
  14. S.-M. Kim, H.-W. Choi, K.-H. Kim, S.-J. Park, and H.-H. Yoon, Journal of the Korean Physical Society, Vol. 55, No. 5, 1996 (2009). https://doi.org/10.3938/jkps.55.1996
  15. Stephen K. O'Leary and P. K. Lim, Solid State Communications, Vol. 104, Issue 1, 17 (1997). https://doi.org/10.1016/S0038-1098(97)00268-8