DOI QR코드

DOI QR Code

Mean Macular Volume in Normal Korean Eyes Measured by Spectral-domain Optical Coherence Tomography

스펙트럼영역 빛간섭단층촬영기로 측정한 한국인 정상안의 황반부 용적

  • Kang, Myeong-Su (Department of Ophthalmology, Dankook University Medical College) ;
  • Kyung, Sung-Eun (Department of Ophthalmology, Dankook University Medical College) ;
  • Chang, Moo-Hwan (Department of Ophthalmology, Dankook University Medical College)
  • 강명수 (단국대학교 의과대학 안과학교실) ;
  • 경성은 (단국대학교 의과대학 안과학교실) ;
  • 장무환 (단국대학교 의과대학 안과학교실)
  • Received : 2009.12.23
  • Accepted : 2010.05.14
  • Published : 2010.08.15

Abstract

Purpose: To evaluate the mean macular volume in normal Korean eyes using spectral-domain optical coherence tomography. Methods: The present study consisted of 132 patients (212 eyes) with no ophthalmic evidence of retinopathy and who had a best corrected visual acuity of 1.0 or better. The total macular volume was measured using spectral-domain optical coherence tomography and was analyzed according to age group, sex, degree of refractive error and presence of systemic disease such as diabetes and hypertension. Results: The mean total macular volume of all subjects was 10.07 ${\pm}$ 0.45 $mm^3$, with means of 10.13 ${\pm}$ 0.40 $mm^3$, 10.05 ${\pm}$ 0.43 $mm^3$ and 9.97 ${\pm}$ 0.58 $mm^3$ measured for the respective A, B, and C age groups. There was a significant difference between male and female patients. In addition, there was a significant difference between diabetic patients in group C and normal subjects. However, there was no significant difference according to degree of refractive error. Conclusions: The measured value of mean macular volume in normal Korean eyes can be expected to provide a standard value for diagnosing retinal disease and the need for careful follow-up.

목적: 스펙트럼영역 빛간섭단층촬영기(SD-OCT)를 이용하여 한국인 정상안의 총 황반부 용적을 알아보고자 하였다. 대상과 방법: 안저검사상 정상이며, 교정시력 1.0 이상인 20세 이후의 한국인 132명 212안을 대상으로 SD-OCT를 이용하여 연령대별, 성별, 굴정이상의 정도 그리고 고혈압 혹은 당뇨 등의 전신질환 유무에 따라 총 황반부 용적을 비교 분석하였다. 결과: 전체 대상안의 평균 총 황반부 용적은 10.07 ${\pm}$ 0.45 $mm^3$였다. 청년군은 10.13 ${\pm}$ 0.40 $mm^3$, 장년군은 10.05 ${\pm}$ 0.43 $mm^3$, 노년군은 9.97 ${\pm}$ 0.58 $mm^3$로 측정되었고, 남성은 10.12 ${\pm}$ 0.46 $mm^3$, 여성은 9.97 ${\pm}$ 0.40 $mm^3$로 나타나 의미 있는 차이(p=0.028)를 보였다. 노년군에서 당뇨병 환자와 정상인은 의미 있는 차이(p=0.020)를 보였으며, 굴절이상에 따른 평균 황반부 용적의 차이는 의미가 없는 것으로 나타났다. 결론: 한국인 정상안의 평균 황반부 용적은 향후 황반부 병변의 진단과 경과관찰에 유용한 기준을 제공할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 단국대학교

References

  1. Menke MN, Dabov S, Knecht P, Sturm V. Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am J Ophthalmol 2009;147:467-72. https://doi.org/10.1016/j.ajo.2008.09.005
  2. Nussenblatt RB, Kaufman SC, Palestine AG, et al. Macular thickening and visual acuity. Measurements in patients with cystoid macular edema. Ophthalmology 1987;94:1134-9. https://doi.org/10.1016/S0161-6420(87)33314-7
  3. Legarreta JE, Gregori G, Punjabi OS, et al. Macular thickness measurements in normal eyes using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging 2008;39: 43-9.
  4. Hogan MJ, Alvarado JA, Weddell JE. Histology of the human eye. Philadelphia: WB Saunders Company 1971;492.
  5. Yi K, Chen TC, de Boer JF. Spectral domain optical coherence tomography. Technics in Ophthalmology 2006;4:170-4. https://doi.org/10.1097/01.ito.0000242542.64120.e5
  6. Chen TC, Cense B, Pierce MC, et al. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging. Arch Ophthalmol 2005;123:1715-20. https://doi.org/10.1001/archopht.123.12.1715
  7. Nassif N, Cense B, Park BH, et al. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 2004;29:480-2. https://doi.org/10.1364/OL.29.000480
  8. Kiernan DF, Hariprasad SM, Chin EK, et al. Prospective comparison of cirrus and stratus optical coherence tomography for quantifying retinal thickness. Am J Ophthalmol 2009;147:267-75. https://doi.org/10.1016/j.ajo.2008.08.018
  9. Age-Related Eye Disease Study Group. The age-related eye disease study severity scale for age-related macular degenereation: AREDS report No. 17. Arch Ophthalmol 2005;123:1484-98. https://doi.org/10.1001/archopht.123.11.1484
  10. Zeimer RC, Mori MT, Khoobehi B. Feasibility test of a new method to measure retinal thickness noninvasively. Invest Ophthalmol Vis Sci 1989;30:2099-105.
  11. Gieser JP, Rusin MM, Mori M, et al. Clinical assessment of the macula by retinal topography and thickness mapping. Am J Ophthalmol 1997;124:648-60. https://doi.org/10.1016/S0002-9394(14)70903-1
  12. Asrani S, Zou S, d'Anna S, et al. Noninvasive mapping of the normal retinal thickness at the posterior pole. Ophthalmology 1999;106: 269-73. https://doi.org/10.1016/S0161-6420(99)90057-X
  13. Kohner EM, Dollery CT. Fluorescein angiography of the fundus in diabetic retinopathy. Br Med Bull 1970;26:166-70. https://doi.org/10.1093/oxfordjournals.bmb.a070770
  14. Weinberger D, Axer-Siegel R, Landau D, Yassur Y. Retinal thickness variation in the diabetic patient measured by the retinal thickness analyser. Br J Ophthalmol 1998;82:1003-6. https://doi.org/10.1136/bjo.82.9.1003
  15. Fusimoto JG, Brezinski ME, Tearney GJ, et al. Optical biopsy and imaging using optical coherence tomography. Nat Med 1995; 1:970-2. https://doi.org/10.1038/nm0995-970
  16. Fusimoto JG, Pitris C, Boppart SA, et al. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2000;2:9-25. https://doi.org/10.1038/sj.neo.7900071
  17. Han IC, Jaffe GJ. Comparison of spectral and time domain optical coherence tomography for retinal thickness measurements in healthy and diseased eyes. Am J Ophthalmol 2009;147:847-58. https://doi.org/10.1016/j.ajo.2008.11.019
  18. Kang JH, Kim SA, Song WG, et al. Macular thickness changes with age in normal subjects measured by optical cohrence tomography. J Korean Ophthalmol Soc 2004;45:592-8.
  19. Kanai K, Abe T, Murayama K, et al. Retinal thickness and changes with age. Nippon Ganka Gakkai Zasshi 2002;106:162-5.
  20. Massin P, Duguid G, Erginary A, et al. Optical coherence tomography for evaluating diabetic macular edema before and after vitrectomy. Am J Ophthalmol 2003;135:169-77. https://doi.org/10.1016/S0002-9394(02)01837-8
  21. Massin P, Vicaut E, Haouchine B, et al. Reproducibility of retinal mapping using optical coherence tomography. Arch Ophthalmol 2001;119:1135-42. https://doi.org/10.1001/archopht.119.8.1135
  22. Hee MR, Puliafito CA, Duker JS, et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 1998; 105:360-70. https://doi.org/10.1016/S0161-6420(98)93601-6
  23. Jung HJ, Hyun JH, Kim YI, Yun IH. Normal Macular thickness measured macular mapping of OCT3. J Korean Ophthalmol Soc 2004;45:962-8.
  24. Sanchez-Tocino H, Alvarez-Vidal A, Maldonado MJ, et al. Retinal thickness study with optical coherence tomography in patients with diabetes. Invest Ophthalmol Vis Sci 2002;43: 1588-94.
  25. Schaudig UH, Glaefke C, Scholz F, Richard G. Optical coherence tomography for retinal thickness measurement in diabetic patients without clinically significant macular edema. Ophthalmic Surg Lasers 2000;31:182-6.
  26. Lee DY, Yu SY, Kwak HW. Quantitative analysis of macular thickness with OCT map. J Korean Ophthalmol Soc 2004;45:1496-502.
  27. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal photoreceptor density decreases with age. Ophthalmology 1995;102: 1853-9. https://doi.org/10.1016/S0161-6420(95)30784-1
  28. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. Am J Ophthalmol 1996;121:181-9. https://doi.org/10.1016/S0002-9394(14)70583-5
  29. Shin JH, Lee HJ, Jin KH. The relationship between axial length, refractive error and foveal thickness measured by OCT in Koreans. J Korean Ophthalmol Soc 2005;46:701-6.
  30. Forooghian F, Cukras C, Meyerle CB, et al. Evaluation of time domain and spectral domain optical coherence tomography in the measurement of diabetic macular edema. Invest Ophthalmol Vis Sci 2008;49:4290-6. https://doi.org/10.1167/iovs.08-2113
  31. Wakitani Y, Sasoh M, Sugimoto M, et al. Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina 2003;23:177-82. https://doi.org/10.1097/00006982-200304000-00007

Cited by

  1. Macular Thickness Changes with Age and Gender in Emmetropia Using Spectral Domain Optical Coherence Tomography vol.52, pp.3, 2011, https://doi.org/10.3341/jkos.2011.52.3.299
  2. Use of Spectral-Domain Optical Coherence Tomography to Analyze Macular Thickness According to Refractive Error vol.52, pp.11, 2010, https://doi.org/10.3341/jkos.2011.52.11.1286
  3. Analysis of Factors Associated with Variability in Measures Obtained by Spectral Domain Optical Coherence Tomography vol.53, pp.5, 2010, https://doi.org/10.3341/jkos.2012.53.5.639
  4. The Efficacy ofVaccinium Uliginosumfor Early Age-Related Macula Degeneration vol.54, pp.8, 2013, https://doi.org/10.3341/jkos.2013.54.8.1255