DOI QR코드

DOI QR Code

Sintering and Electrical Properties of Cr2O3-doped ZnO

Cr2O3를 첨가한 ZnO의 소결과 전기적 특성

  • Hong, Youn-Woo (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyo-Soon (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Dong-Hun (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
  • 홍연우 (한국세라믹기술원 바이오IT융합센터) ;
  • 신효순 (한국세라믹기술원 바이오IT융합센터) ;
  • 여동훈 (한국세라믹기술원 바이오IT융합센터) ;
  • 김진호 (경북대학교 신소재공학부)
  • Received : 2010.08.31
  • Accepted : 2010.10.23
  • Published : 2010.11.01

Abstract

In this study, we have characterized the roles of $Cr_2O_3$ on the sintering and electrical properties of ZnO. The densification and grain growth of Cr-doped ZnO (ZCr) system was mainly influenced by Cr contents. In the beginning of sintering, the densification of ZnO was retarded as reducing the Zni concentration in ZnO lattice with Cr doping. And the densification and grain growth of ZnO was more retarded due to a formation of spinel phase with increasing the Cr contents. ZCr system revealed varistor behavior with nonlinear coefficient $\alpha$ of 3~23 depending on the sintering temperature, implying double Schottky barrier formation on the grain boundary of ZnO. Especially the best varistor characteristics should be developed with 0.1~0.5 at% Cr contents and under $1100^{\circ}C$ in ZCr systems.

Keywords

References

  1. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Superlattices and Microstructures, 34, 3 (2003). https://doi.org/10.1016/S0749-6036(03)00093-4
  2. G. Neumann, Current Topics in Materials Science, Vol. 7 (North-Holland, Amsterdam, 1981) p. 153.
  3. D. R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01793.x
  4. R. T. Grimley, R. P. Burns, and M. G. Inghram, J. Chem. Phys. 34, 664 (1961). https://doi.org/10.1063/1.1701005
  5. P. D. Ownby and G. E. Jungquist, J. Chem. Phys. 55, 433 (1972).
  6. A. Holt and P. Kofstad, Solid State Ionics 69, 137 (1994). https://doi.org/10.1016/0167-2738(94)90402-2
  7. A. Holt and P. Kofstad, Solid State Ionics 69, 127 (1994). https://doi.org/10.1016/0167-2738(94)90401-4
  8. Y.-W Hong, H.-S. Shin, D.-H. Yeo, J.-H. Kim, and J.-H. Kim, J. KIEEME 22, 949 (2009).
  9. M. L. Mendelson, J. Am. Ceram. Soc. 52, 443 (1969). https://doi.org/10.1111/j.1151-2916.1969.tb11975.x
  10. Y.-W. Hong, H.-S. Shin, D.-H. Yeo, J.-H. Kim, and J.-H. Kim, J. KIEEME 21, 738 (2008).
  11. Y. W. Hong and J. H. Kim, Ceramics International, 30, 1301 (2004). https://doi.org/10.1016/j.ceramint.2003.12.028
  12. H. H. Hng and P. L. Chan, Ceramics International, 35, 409 (2009). https://doi.org/10.1016/j.ceramint.2007.12.004