DOI QR코드

DOI QR Code

Comparative Study of Approximate Optimization Techniques in CAE-Based Structural Design

구조 최적설계를 위한 다양한 근사 최적화기법의 적용 및 비교에 관한 연구

  • 송창용 (목포대학교 해양시스템공학과) ;
  • 이종수 (연세대학교 기계공학과)
  • Received : 2010.03.12
  • Accepted : 2010.09.01
  • Published : 2010.11.01

Abstract

The comparative study of regression-model-based approximate optimization techniques used in the strength design of an automotive knuckle component that will be under bump and brake loading conditions is carried out. The design problem is formulated such that the cross-sectional sizing variables are determined by minimizing the weight of the knuckle component that is subjected to stresses, deformations, and vibration frequency constraints. The techniques used in the comparative study are sequential approximate optimization (SAO), sequential two-point diagonal quadratic approximate optimization (STDQAO), and approximate optimization based on enhanced moving least squares method (MLSM), such as CF (constraint feasible)-MLSM and Post-MLSM. Commercial process integration and design optimization (PIDO) tools are utilized for the application of SAO and STDQAO. The enhanced MLSM-based approximate optimization techniques are newly developed to ensure constraint feasibility. The results of the approximate optimization techniques are compared with those of actual non-approximate optimization to evaluate their numerical performances.

본 논문에서는 범프 및 브레이크 하중조건 하에서 자동차 넉클의 강도설계에 관한 다양한 회귀모델 기반 근사최적화 기법 및 그 성능을 비교하고자 한다. 최적설계문제는 응력, 변형 및 진동주파수의 제한조건 하에서 중량을 최소화하여 설계변수인 단면치수가 결정되도록 정식화 된다. 비교 연구를 위해 사용된 근사화 기법은 순차적 근사최적화(SAO), 순차적 이점대각이차 근사최적화(STDQAO), 그리고 개선된 이동최소 자승법(MLSM) 기반 근사최적화 기법인 CF-MLSM 와 Post-MLSM 이다. SAO 와 STDQAO 적용을 위하여 상용 프로세스통합 설계최적화(PIDO) 코드를 사용하였다. 본 연구에 적용한 MLSM 기반 근사최적화 기법들은 제한조건의 가용성을 보장할 수 있도록 새롭게 개발되었다. 다양한 근사최적화 기법에 의한 설계결과는 설계 해의 개선 및 수렴속도 등 수치적 성능을 기준으로 실제 비근사최적화 결과와 비교검토 되었다.

Keywords

References

  1. Crouse, H. W. and Anglin, L. D., 1993, Automotive Mechanics, McGraw-Hill, New York.
  2. Song, C. Y. and Lee, J., 2009, "Strength Design of Knuckle Component Using Moving Least Squares Response Surface Based Approximate Optimization Methods," Proc. IMechE, Part D: Journal of Automobile Engineering, Vol. 223, No. 8, pp. 1019-1032.
  3. Haftka, R. T. and Gürdal, Z., 1991, Elements of Structural Optimization, Kluwer Academic Publishers, Dordrecht.
  4. Park, Y. S. and Park, G. J., 1997, "A Development of Move Limit Strategy Based on the Accuracy of Approximation for Structural Optimization," Journal of KSME, Vol. 21, No. 8, pp. 1218-1228.
  5. Jacobs, J. H., Etman, L. F. P., van Keulen, F. and Rooda, J. E., 2004, "Framework for Sequential Approximate Optimization," Structural and Multidisciplinary Optimization, Vol. 27, No. 5, pp. 384-400.
  6. Kim, M. S., Kim, J. R. and Choi, D. H., 2001, "Design Optimization Using Two-Point Diagonal Quadratic Approximation," Journal of KSME, Vol. 25, No. 9, pp. 1423-1431.
  7. Kim, J. R. and Choi, D. H., 2008, "Enhanced Two-Point Diagonal Quadratic Approximation Methods for Design Optimization," Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 6-8, pp. 846-856. https://doi.org/10.1016/j.cma.2007.09.014
  8. Lancaster, P. and Salkauskas, K., 1996, Curve and Surface Fitting: An Introduction, Academic Press, New York.
  9. Song, C. Y. and Lee, J., 2009, "A Realization of Constraint Feasibility in a Moving Least Squares Response Surface Based Approximate Optimization," Computational Optimization and Applications, DOI 10.1007/s10589-009-9312-z.
  10. iSIGHT User’s Manual, Version 9.0, Engineous Software Inc., 2006.
  11. PIAnO (Process Integration, Automation and Optimization) User’s Manual, Version 2.4, FRAMAX Inc., 2008.
  12. Myers, R. H. and Montgomery, D. C., 1995, Response Surface Methodology: Process and Product Optimization using Designed Experiments, Wiley, New York.
  13. ABAQUS User’s Manual Version 6.8, Dassault Systèmes, 2008.
  14. Simpson, T. W., Peplinkski, J., Koch, P. N. and Allen, J. K., 2001, "Metamodels for Computer Based Engineering Design: Survey and Recommendations," Engineering with Computers, Vol. 17, No. 2, pp. 129-150. https://doi.org/10.1007/PL00007198
  15. Box, G. E. P. and Wilson, K. B., 1951, "On the Experimental Attainment of Optimum Conditions," Journal of the Royal Statistical Society, Vol. 13, pp. 1-45.
  16. Zou, T., Mourelatos, Z. P., Mahadevan, J. and Tu, J., 2008, "An Indicator Response Surface Method for Simulation-Based Reliability Analysis," Journal of Mechanical Design, Vol. 130, No. 7, pp. 071401.1-11.
  17. Shin, Y., Lee, Y., Ryu, J. S. and Choi, D. H., 2005, "A Development of Move Limit Strategy Based on the Accuracy of Approximation for Structural Optimization," Journal of KSME, Vol. 21, No. 8, pp. 1218-1228.
  18. Sacks, J., Schiller, S. B. and Welch, W. J., 1989, "Designs for Computer Experiments," Statistical Science, Vol. 4, No. 4, pp. 409-423. https://doi.org/10.1214/ss/1177012413

Cited by

  1. Kinematic Analysis of Levering Systems in Compound Bows vol.37, pp.1, 2013, https://doi.org/10.3795/KSME-A.2013.37.1.055
  2. Role of multi-response principal component analysis in reliability-based robust design optimization: an application to commercial vehicle design vol.58, pp.2, 2018, https://doi.org/10.1007/s00158-018-1908-4