DOI QR코드

DOI QR Code

OPTIMIZATION OF THE TEST INTERVALS OF A NUCLEAR SAFETY SYSTEM BY GENETIC ALGORITHMS, SOLUTION CLUSTERING AND FUZZY PREFERENCE ASSIGNMENT

  • Zio, E. (Ecole Centrale Paris- Supelec Chair Systems Science and Energetic Challenge European Foundation for New Energy - EDF) ;
  • Bazzo, R. (Politecnico di Milano)
  • Received : 2009.12.11
  • Accepted : 2010.05.06
  • Published : 2010.08.31

Abstract

In this paper, a procedure is developed for identifying a number of representative solutions manageable for decision-making in a multiobjective optimization problem concerning the test intervals of the components of a safety system of a nuclear power plant. Pareto Front solutions are identified by a genetic algorithm and then clustered by subtractive clustering into "families". On the basis of the decision maker's preferences, each family is then synthetically represented by a "head of the family" solution. This is done by introducing a scoring system that ranks the solutions with respect to the different objectives: a fuzzy preference assignment is employed to this purpose. Level Diagrams are then used to represent, analyze and interpret the Pareto Fronts reduced to the head-of-the-family solutions.

Keywords

References

  1. Blasco , X., Herrero, J.M., Sanchis, J., Martínez, M. (2008), A New Graphical Visualization of n-Dimensional Pareto Front for Decision-Making in Multiobjective Optimization, Information Science, 178: 3908-3924. https://doi.org/10.1016/j.ins.2008.06.010
  2. Chiu, S. (1994), Fuzzy Model Identification Based on Cluster Estimation, Journal of Intelligent & Fuzzy Systems, 2 (3)
  3. Cho, K. I., Kim, S. H. (1997) An improved Interactive hybrid method for the linear multi-objective knapsack problema, Computers Ops. Res., 24, 11: 991-1003 https://doi.org/10.1016/S0305-0548(97)00021-X
  4. De Boer, L., van der Wegen, L, Telgen, J. (1998), Outranking methods in support of supplier selection, European Journal of Purchasing and Supply Management, 4: 109-118. https://doi.org/10.1016/S0969-7012(97)00034-8
  5. Giuggioli Busacca, P., Marseguerra, M., Zio, E. (2001), Multiobjective Optimization by Genetic Algorithms: Application to Safety Systems, Reliability Engineering and System Safety, 72: 59-74 https://doi.org/10.1016/S0951-8320(00)00109-5
  6. Katagiri, H., Sakawa, M, Kato, K., Nishizaki, I. (2008), Interactive multiobjective fuzzy random linear programming: Maximization of possibility and probability, European Journal of Operational Research, 188: 530-539 https://doi.org/10.1016/j.ejor.2007.02.050
  7. Malakooti, B. (1988) A decision support system and a heuristic interactive approach for solving discrete multiple criteria problems, IEEE Trans. On Sys., Man and Cyber., 18: 273-284. https://doi.org/10.1109/21.3466
  8. Martorell, S., Carlos, S., Sanchez, A., Serradell, V. (2000) Constrained Optimization of Test Intervals Using a Steady-State Genetic Algorithm, Reliab, Engng Syst Safety, 67:215-32. https://doi.org/10.1016/S0951-8320(99)00074-5
  9. Molina, J., Santana, L.V., Hernandez-Diaz, A.G., Coello Coello, C.A., Caballero, R. (2009), g-dominance: Reference Point Based Dominance for Multiobjective Metaheuristics, European Journal of Operational Research, 197: 658-692.
  10. NRC, US Nuclear Regulatory commission,. Rates of Initiating Events at United States Nuclear Power Plants: 1987-1995, NUREG/CR- 5750.
  11. ICRP Publication 60, (1991), 1990 recommendations of the International Commission on Radiological Protection, Annals of the ICRP, 21: 1-3.
  12. Rios Insua, D., Martin, J. (1994), Robustness Issue under Imprecise Beliefs and Preferences, Journal of Statistical Planning and Inference, 40, Issues 2-3: 383-389. https://doi.org/10.1016/0378-3758(94)90133-3
  13. Rousseeuw, P. J. (1987) Silhouettes: A graphical Aid to the Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics, 20 : 53-65. https://doi.org/10.1016/0377-0427(87)90125-7
  14. Rousseeuw P., Trauwaert E. and Kaufman L. (1989), Some Silhouette-based Graphics for Clustering Interpretation. Belgian Journal of Operations Research, Statistics and Computer Science, 29 (3).
  15. Roy, B. (1968) Classement et Choix en Presence de Points de Vue Multiples (la Methode ELECTRE), RIRO, 8: 57-75.
  16. Roy, B. (1974) Criteres Multiples et Modelisation des Preferences (l’Apport des Relations de Surclassement), Revue d’Economie Politique, 84: 1-44.
  17. Roy, B., Bouyssou, D. (1986), Comparison of two Decision-Aid Models Applied to a Nuclear Power Plant Siting Example, European Journal of Operational Research, 25:200-215. https://doi.org/10.1016/0377-2217(86)90086-X
  18. Yang, J.B. (1996), Multiple Criteria Decision Making Methods and Applications, Hunan Publishing House, Changsha P.R. China.
  19. Yang, J-E., Hwang, M-J., Sung, T-Y., Jin, Y. (1999) Application of Genetic Algorithm for Reliability Allocation in Nuclear Power Plants, Reliab Engng Syst Safety, 65:229-38. https://doi.org/10.1016/S0951-8320(98)00103-3
  20. Yang, J.B. (2000), Minimax Reference Point Approach and its Application for Multiobjective Optimisation, European Journal of Operational Research, 126: 541-556. https://doi.org/10.1016/S0377-2217(99)00309-4
  21. Zio, E., Baraldi, P., Pedroni, N. (2009), Optimal Power System Generation Scheduling by Multi-Objective Genetic Algorithms with Preferences, Reliability Engineering and System Safety, 94: 432-444. https://doi.org/10.1016/j.ress.2008.04.004
  22. Zio, E., Bazzo, R. (2009), Multiobjective Reliability Allocation Problems by Fuzzy Preference Assignment on Level Diagrams

Cited by

  1. Prediction of Axial DNBR Distribution in a Hot Fuel Rod Using Support Vector Regression Models vol.58, pp.4, 2011, https://doi.org/10.1109/TNS.2011.2159738