Quality Characteristics of Fermented Mate(ILex paraguarensis) Leaf Tea

Mate (ILex paraguarensis) 발효차의 품질특성

  • Hong, Joo-Heon (Department of Food Science and Technology, Catholic University of Daegu)
  • 홍주헌 (대구가톨릭대학교 외식식품산업학부)
  • Received : 2010.06.02
  • Accepted : 2010.08.06
  • Published : 2010.08.30

Abstract

This study was conducted to compare and analyze the active and general components in mate leaf tea according to degree of fermentation conditions. The contents of tannic acid of hot water extracts from #1 (mate leaf), #2 (Mate leaf after fermentation and roasting), #3 (Mate leaf after Pan-firing), and #4 (Mate leaf after final drying) were decreased according to degree of fermentation conditions. Polyphenol contents of hot water extracts were approximate in #1 and #3, with measurements of 43.45 mg/g and 38.20 mg/g, respectively. Caffeine contents were 6.78 mg/g in #1, 4.30 mg/g in #3, and 3.65 mg/g in #4. In addition, the level of total free amino acid of #1 was higher than that of #2, #3, and #4. Lightness (L) and Redness (a) values increased and yellowness (b) values decreased after fermentation. When sensory tests were conducted, mate leaf tea after fermentation had pleasant taste.

본 연구는 최근 기능성 차 소재로 알려져 있는 mate의 특유의 맛과 향을 개선하기 위하여 발효공정을 적용하였으며 발효공정 단계별 유용성분 분석을 통해 품질특성을 비교하였다. 발효 전 mate 추출물에서는 탄닌 함량이 $5.81{\pm}0.02\;{\mu}g/mL$로 측정되었으나 발효 후 덖기 과정 및 최종 건조과정을 거침에 따라 각각 $5.56{\pm}0.03\;{\mu}g/mL$, $5.49{\pm}0.04\;{\mu}g/mL$로 유의성 있게 감소하였다. 총 폴리페놀 및 총 플라보노이드 함량은 발효 전 mate 추출물에서 각각 43.45 mg/g, 0.86 mg/g이었으며 발효 후 덖음 과정을 거친 구간이 각각 38.20 mg/g, 0.73 mg/g으로 나타나 발효공정이 진행 될수록 낮아지는 경향이었다. 발효 전 mate추출물의 카페인 함량은 6.78 mg/g이었으나 발효 후 덖음 과정을 거친 후 4.30 mg/g으로 나타나 발효공정이 진행될수록 낮아지는 경향이었으며 최종 건조완료 후 3.65 mg/g이었다. 발효공정이 진행됨에 따라 유리아미노산과 필수아미노산은 낮아지는 경향이었으며, 발효 후 덖기과정을 거친 mate의 유리아미노산과 필수아미노산 함량은 각각 $690.95\;{\mu}g/mL$, $93.68\;{\mu}g/mL$이었다. 종합적인 기호도는 발효공정이 진행될수록 높은 점수를 얻어 풍미가 향상되었음을 알 수 있었는데, 발효를 통해 단맛 및 구수한 맛은 증가하였고 쓴맛과 떫은맛은 감소하여 종합적인 기호도는 증가하였다.

Keywords

References

  1. Moon, J.H. and Park, K.H. (1995) Functional components and physiological activity of tea. J. Korean Tea Soc., 1, 175-191
  2. Jacques, R.A., Oliveira, A.P., Arruda, E.J., Oliveira, L.C., Oliveira, J.V., Dariva, C. and Caramao, E.B. (2007) Extraction of purine alkaloids from Mate (Ilex Paraguariensis) using supercritical $CO_{2}$. J. Agric. Food Chem., 55, 7510-7516 https://doi.org/10.1021/jf071545g
  3. Katia, H.K., Alexandre T.C., Eloir P.S., Grace G. and Dominique G. (1996) Mate saponin 5, a highly polar saponin from ILEX Paraguariensis. Phytochemistry, 42, 1119-1122 https://doi.org/10.1016/0031-9422(96)00036-2
  4. Rosangela A.J., Claudio D., Jose, V.O. and Elina B.C. (2008) Pressurized liquid extraction of mate tea leaves. Analytica Chimica Acta, 625, 70-76 https://doi.org/10.1016/j.aca.2008.07.002
  5. Manuella, L., Frank S.B., Bruna, R.S., Aline C.B., Vera Lucia G.K., Luis C.P. and Samuel S.V. (2008) Mate tea reduced acute lung inflammation in mice exposed to cigarette smoke. Nutrition, 24, 375-381 https://doi.org/10.1016/j.nut.2008.01.002
  6. Heck, C.I. and Mejia, E.G. (2007) Yerba mate tea (Ilex Paraguariensis): A comprehensive review on chemistry, health implications, and technological consideration. J. Food Sci., 72, 138-151
  7. Jack L.A., Li, X.C., Chowdhury F.H., Dale G.N., David M.S., Paul M., Baskaran G., Josh D., Kristin R.L. and Ping, Q. (2005) Naturally occurring proteasome inhibitors from mate tea(Ilex Paraguariensis) serve as models for topical proteasome inhibitors. J. Invest. Dermatol., 125, 207–212
  8. Cheong, K. and Cho, H.S. (2006) The customs of ddeok-cha (lump tea) and characteristics by degrees of fermentation. J. Korean Tea Soc., 12, 57-70
  9. Chung, Y.H. and Shin, M.K. (2005) A study on the physicochemical properties of korean teas according to degree of fermentation. Korean J. Food Nutr., 18, 94-101
  10. Choi, Y.J. and Park, K.H. (2008) Change of ingredient and color of fermented tea during ferment process. Food Preserv. Processing Ind., 7, 33-36
  11. Park, J.Y. (2008) Green tea ingredient analysis and sensory test according to leachate water. J. Korean Tea Soc., 14, 97-110
  12. Singleton, V.L. and Rossi, J.A. (1965) Colorimetry of total phenolics with phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Viticult., 16, 144-158
  13. Davis, W.B. (1947) Determination of flavonones in citrus fruits. Anal. Chem., 19, 476 https://doi.org/10.1021/ac60007a016
  14. Lee, E.J., Kim, J.S. and Kwon, J.H. (2008) Optimization of microwave-assisted extraction conditions for total catechin and electron donating ability of grape seed extracts. Korean J. Food Preserv., 15, 840-846
  15. Mario, G.F. and Rodney, J.G. (2006) Analysis of catechins from milk-tea beverages by enzyme assisted extraction followed by high performance liquid chromatography. Food Chem., 99, 484-491 https://doi.org/10.1016/j.foodchem.2005.08.010
  16. Bae, M.J. and Ye, E.J. (2010) Analyses of active components and quality characteristics in the manufacturing of fermented mulberry leaf (Morus alba) tea. J. Korean Soc. Food Sci. Nutr., 39, 859-863 https://doi.org/10.3746/jkfn.2010.39.6.859
  17. Oh, S.M. (2006) Optimization of production of bioactive compounds of the fermented soybean curd residue by Bacillus sp. MS Thesis, Keimyung University, Daegu, Korea
  18. Jeong, C.H., Kang, S.T., Joo, O.S., Lee, S.C., Shin, Y.H., Shim, K.H., Cho, S.H., Choi, S.G. and Heo, H.J. (2009) Phenolic content, antioxidant effect and acetylcholinesterase inhibitory activity of Korean commercial green, puer, oolong, and black teas. Korean J. Food Preserv., 16, 230-237
  19. Choi, O.J. and Choi, K.H. (2003) The physicochemical properties of korean wild teas (green tea, semi-fermented tea, and black tea) according to degree of fermentation. J. Korean Soc. Food Sci. Nutr., 32, 356-362 https://doi.org/10.3746/jkfn.2003.32.3.356
  20. Shon, M.Y., Kim, S.H., Nam, S.H., Park, S.K. and Sung, N.J. (2004) Antioxidant activity of korean green and fermented tea extracts. J. Life Sci., 14, 920-924 https://doi.org/10.5352/JLS.2004.14.6.920
  21. Shihoko, T., Yumie, M,, Toshio, M., Yusuie, S. and Kazuo, I. (1987) Comparison of caffeine and catechin components in infusion of various tea(green tea, ooling and black tea)and tea drinks. Nippon Shokuhin Kogyo Gakkaishi, 34, 24-27
  22. Yamamoto, M., Sano, M., Matsuda, N., Miyase, T., Kawamoto, K., Suzuki, N., Yoshimura, M., Tachibana, H. and Hakamata, K. (2001) The change of epigallocatechin-3-O-(3-O-methyl) gallate content in tea of different varieties, tea of crop and processing method. Nippon Shokuhin Kagaku Kogaku Kaishi, 48, 64-68 https://doi.org/10.3136/nskkk.48.64
  23. Mau, J.L., Chyau, C.C., Li, J.Y. and Tseng, Y.H. (1997) Flavor components in straw mushrooms Volariella volvacea harvested at different stages of maturity. J. Agric. Food Chem., 45, 4726-4729 https://doi.org/10.1021/jf9703314
  24. Ye, E.J. and Bae, M.J. (2010) Comparison of components between mulberry leaf tea and fermented mulberry leaf tea. J. Korean Soc. Food Sci. Nutr., 39, 421-427 https://doi.org/10.3746/jkfn.2010.39.3.421
  25. Hong, J.G. and Yang, C.S. (2006) Effect of purified green tea catechins on cytosolic phospholipase A2 and arachidonic acid release in human gastrointestinal cancer cell lines. Food Sci. Biotechnol., 15, 799-804