Performance Analysis of LED-ID Communication Systems In an Indoor Environment

실내 환경에서의 LED-ID 통신 시스템의 성능 분석

  • Received : 2010.04.20
  • Accepted : 2010.07.07
  • Published : 2010.08.31

Abstract

In this paper, we studied line coding technology tendency for high speed data communication at LED-ID (Identification) communication system in indoor environment. A LED-ID technology is a communication using visible ray (RGB) that come out in LED device. It is energy curtailment effect and possible in ubiquitous network service applications. The LED-ID system has the above advantages about that the communication throughout the whole room is enabled by high power lighting and lighting equipment with white colored LED which are easy to install and have good outward appearance. Therefore, the transmission by light waves is more suitable for wireless networks than by radio waves. We compared with the NRZ, AMI, 4B5B, HDB3, 8B10B line coding for efficient in error detection and serves data transmission of high speed.

본 논문에서는, 실내 환경 LED-ID 통신 시스템에서의 고속 데이터 전송을 위한 라인코딩 기법에 대해 연구하였다. LED-ID 기술은 LED를 통해 방사되는 가시광을 이용한 차세대 통신 시스템으로, 유비쿼터스 네트워크 서비스 구축 시 에너지 절감 효과를 가져올 수 있다. 또한 LED-ID 통신 시스템은 기존 인프라를 활용하여 고출력 전송이 가능하며 유지 보수 비용을 절감할 수 있다. 그러므로, 기존 RF 시스템에 비해 실내 무선 통신 구축에 있어서 다양한 장점을 가진다. 이러한 장점을 바탕으로, 본 논문에서는 실내 환경의 LED-ID 통신 채널을 분석하고, 분석된 채널에 적합한 라인 코딩 (NRZ, AMI, 4B5B, HDB3, 8B10B)을 도출하여 고속 데이터 전송을 실현하고자 한다.

Keywords

References

  1. J. Y. Kim, LED Visible Light Communication Systems, Hongreung Science Publisher, Seoul, Korea, 2009.
  2. C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal and M. G. Craford, "High performance AlGaInP visible light-emitting diodes," Appl. Phys. Lett. vol. 57, no. 27, pp. 2937-2939, Dec. 1990. https://doi.org/10.1063/1.103736
  3. G. Yang, K. Pahlavan and J.F. Lee, "A 3D Propagation Model with polarization Characteristics in Indoor Radio Channels," IEEE GLOBECOM'93. vol. 2. pp.1252-1256, Dec. 1993.
  4. J. Grubor, J. O. Gaete, J. Waleski, S. Randel and K. Langer, "High-speed wireless indoor communication via visible light," ITG Bachbericht, pp.203-208, 2007.
  5. W. A. Krzymien, "Transmission performance analysis of a new class of line codes for optical fiber systems", IEEE Trans. Commun., vol.37, no.4, pp.402-404, April 1989 https://doi.org/10.1109/26.20124
  6. Y. Tanaka, T. Komine, S. Haruyama and M. Nakagawa, "Indoor visible communication utilizing plural white LEDs as lighting," in Proc. of IEEE PIMRC'01, vol. 2, pp. 81-85, Sept. 2001.
  7. Y. Tanaka, S. Haruyama and M. Nakagawa, "Wireless optical transmissions with the white colored LED for the wireless home links," in Proc. of the 11th Int. Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC 2000). London, UK, pp. 1325-1329. Sep. 2000.
  8. T. Komine, Y. Tanaka, S. Haruyama and M. Nakagawa, "Basic study on visible-light communication using light emitting diode illumination," in Proc. of 8th Int. Symp. on Microwave and Optical Technol. (ISMOT 2001). Montreal, Canada, pp.4548, 2001.
  9. J. G. Proakis, Digital Communication, 4th ed., Mc-Graw Hill, New York, 2001.
  10. F. R. Gfeller and U. H. Bapst, "Wireless in-house data communication via diffuse infrared radiation," in Proc. of IEEE , vol.67, no.11, pp. 1474-1486, Nov. 1979,
  11. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. S elect. Areas Commun., vol. 11, no.3, pp. 367-380, Apr. 1993. https://doi.org/10.1109/49.219552