DOI QR코드

DOI QR Code

Characterization of the Bacillus licheniformis WL-12 Mannanase from a Recombinant Escherichia coli

재조합 대장균으로부터 생산된 Bacillus licheniformis WL-12의 Mannanase 특성

  • Yoon, Ki-Hong (Department of Food Science & Biotechnology, Woosong University)
  • 윤기홍 (우송대학교 식품생물과학과)
  • Received : 2010.04.19
  • Accepted : 2010.05.03
  • Published : 2010.06.30

Abstract

A gene encoding the mannanase of Bacillus licheniformis WL-12, which had been isolated from Korean soybean paste, was cloned into Escherichia coli and nucleotide sequence of the mannanase gene was subsequently determined. The mannanase gene consisted of 1,080 nucleotides encoding a polypeptide of 360 amino acid residues. The deduced amino acid sequence was identical to that of putative mannanase from B. liceniformis DSM13 belonging to GH family 26. The mannanase was partially purified from cell-free extract of the recombinant Escherichia coli carrying a WL-12 mannanase gene by ammonium sulfate fractionation and DEAE-Sepharose column chromatography. Optimal conditions for the partially purified enzyme occurred at pH 6.0 and $65^{\circ}C$. The enzyme showed higher activity on locust bean gum (LBG) galactomannan and konjac glucomannan than on guar gum galactomannan. The predominant products resulting from the mannanase hydrolysis were mannose, mannobiose and mannotriose for LBG or mannooligosaccharides. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose.

가정에서 제조된 된장으로부터 분리된 Bacillus licheniformis WL-12의 mannanase 유전자를 크로닝하여 그 염기서열을 결정한 결과 mannanase 유전자는 360 아미노산으로 구성된 단백질을 코드하며 1,080 뉴클레오티드로 이루어졌다. 아미노산 잔기배열을 분석한 결과 WL-12의 mannanase는 GH family 26에 속하는 B. licheniformis DSM13의 mannanase와 동일하였다. B. lichenifromis WL-12의 mannanase 유전자를 함유한 재조합대장균의 균체파쇄상등액으로부터 부분정제된 효소를 사용하여 반응특성을 조사하였다. pH 6.0과 $65^{\circ}C$에서 최대 반응활성을 보였으며, locust bean gum (LBG)과 konjac의 분해능은 높으나 guar gum의 분해능은 낮았다. Mannanase로 LBG와 mannooligosaccharides를 분해하였을 때 mannose, mannobiose와 mannotriose가 주된 최종 반응산물로 관찰되었으며 mannobiose는 분해하지 못하였으나 이보다 중합도가 큰 mannooligosaccharides은 분해하였다.

Keywords

References

  1. Akino T, Nakamura N, and Horikoshi K (1988) Characterization of three $\beta$-mannanases of an alkalophilic Bacillus sp. Agric Biol Chem 52, 773-779. https://doi.org/10.1271/bbb1961.52.773
  2. Beukes N, Chan H, Doi RH, and Pletschke BI (2008) Synergistic associations between Clostridium cellulovorans enzymes XynA, ManA and EngE against sugarcane bagasse. Enzyme Microb Technol 42, 492-498. https://doi.org/10.1016/j.enzmictec.2008.01.010
  3. Dhawan S and Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Res Biotechnol. 27, 197- 216. https://doi.org/10.1080/07388550701775919
  4. Fu X, Huang X, Liu P, Lin L, Wu G, Li C, Feng C, and Hong Y (2010) Cloning and Characterization of a novel mannanase from Paenibacillus sp. BME-14. J Microbiol Biotechnol 20, 518-524.
  5. Gibbs MD, Reeves RA, Sunna A, and Bergquist PL (1999) Sequencing and expression of a $\beta$-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr Microbiol 39, 351-357. https://doi.org/10.1007/s002849900471
  6. Hatada Y, Takeda N, Hirasawa K, Ohta Y, Usami R, Yoshida Y, Grant WD, Ito S, and Horikoshi K (2005) Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9, 497-500. https://doi.org/10.1007/s00792-005-0460-5
  7. Hossain MZ, Abe J, and Hizukuri S (1996) Multiple forms of $\beta$- mannanase from Bacillus sp. KK01. Enzyme Microb Technol 18, 95-98. https://doi.org/10.1016/0141-0229(95)00071-2
  8. Jiang Z, Wei Y, Li D, Li L, Chai P, and Kusakabe I (2006) Highlevel production, purification and characterization of a thermostable $\beta$-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydrate Polymers 66, 68-96.
  9. Jorgensen H, Sanadi AR, Felby C, Lange NE, Fischer M, and Ernst S (2010). Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake. Appl Biochem Biotechnol 161, 318-332. https://doi.org/10.1007/s12010-009-8814-6
  10. Kataoka N and Tokiwa Y (1998) Isolation and characterization of an active mannanase-producing anaerobic bacerium, Clostridium tertium KT-5A, from lotus soil. J Appl Microbiol 84, 357-367. https://doi.org/10.1046/j.1365-2672.1998.00349.x
  11. Kweun MA, Kim HS, Lee MS, Choi JH, and Yoon KH (2003) Mannanase production by a soybean isolate, Bacillus subtilis WL-7. Kor J Microbiol Biotechnol 31, 277-283.
  12. Kweun MA, Lee MS, Choi JH, Cho KH, and Yoon KH (2004) Cloning of a Bacillus subtilis WL-7 mannanase gene and characterization of the gene product. J Microbiol Biotechnol 14, 1295-1302.
  13. Ma Y, Xue Y, Dou Y, Xu Z, Tao W, and Zhou P (2004) Characterization and gene cloning of a novel $\beta$mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles 8, 447-454. https://doi.org/10.1007/s00792-004-0405-4
  14. Mendoza NS, Arai M, Kawaguchi T, Yoshida T, and Joson LM (1994) Purification and properties of mannanase from Bacillus subtilis. Wor J Microbiol Biotechnol 10, 551-556. https://doi.org/10.1007/BF00367665
  15. Oda Y, Komaki T, and Tonomura K (1993) Purification and properties of extracellular $\beta$-mannanases produced by Enterococcus casseliflavus FL2121 isolated from decayed konjac. J Ferment Bioeng 76, 14-18. https://doi.org/10.1016/0922-338X(93)90045-A
  16. Oh YP, Lee JM, Cho KH, and Yoon KH (2002) Isolation and enzyme production of a mannanase-producing strain, Bacillus sp. WL-3. Kor J Microbiol Biotechnol 30, 247-252.
  17. Songsiriritthigul C, Buranabanyat B, Haltrich D, and Yamabhai M (2010) Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-$\beta$-mannosidase from Bacillus licheniformis in Escherichia coli. Microb Cell Factories doi:10.1186/1475-2859-9-20.
  18. Sunna A, Gibbs MD, Chin CWJ, Nelson PJ, and Bergquist PL (1999) A gene encoding a novel mutidomain $\beta$-1,4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl Environ Microbiol 66, 664-670.
  19. Talbot G and Sygusch J (1990) Purification and characterization of thermostable $\beta$-mannanase and $\alpha$-galactosidase from Bacillus stearothermophilus. Appl Environ Microbiol 56, 3505-3510.
  20. Yoon KH (2006) Cloning and expression of a Bacillus licheniformis cellulase gene. Kor J Microbiol 42, 313-318.
  21. Yoon KH, Chung S, and Lim BL (2008) Characterization of the Bacillus subtilis W-3 mannanase from a recombinant Escherichia coli. The J Microbiol 46, 344-349. https://doi.org/10.1007/s12275-008-0045-y
  22. Yoon KH and Lim BL (2007) Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis. J Microbiol Biotechnol 17, 1688-1694.
  23. Yoon SY, Yang YX, Shinde PL, Choi JY, Kim JS, Kim YW, Yun K, Jo JK, Lee JH, Ohh SJ, Kwon IK, and Chae BJ (2010) Effects of mannanase and distillers dried grain with solubles on growth performance, nutrient digestibility, and carcass characteristics of grower-finisher pigs. J Anim Sci 88, 181-191. https://doi.org/10.2527/jas.2008-1741
  24. Yosida S, Sako Y, and Uchida A (1997) Purification, properties, and N-terminal amino acid sequences of guar gum-degrading enzyme from Bacillus circulans K-1. Biosci Biotechnol Biochem 61, 251-255. https://doi.org/10.1271/bbb.61.251
  25. Zhang M, Chen XL, Zhang ZH, Sun CY, Chen LL, He HL, Zhou BC, and Zhang YZ (2009) Purification and functional characterization of endo-beta-mannanase MAN5 and its application in oligosaccharide production from konjac flour. Appl Microbiol Biotechnol 83, 865-873. https://doi.org/10.1007/s00253-009-1920-0
  26. Zhang Y, Ju J, Peng H, Gao F, Zhou C, Zeng Y, Xue Y, Li Y, Henrissat B, Gao GF, and Ma Y (2008) Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. J Biol Chem 283, 31551-3158. https://doi.org/10.1074/jbc.M803409200

Cited by

  1. Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway vol.31, pp.7, 2021, https://doi.org/10.4014/jmb.2101.01032