DOI QR코드

DOI QR Code

Capability of Accumulation Mode Aerosols Containing Black Carbon as CCN Observed during the PACDEX Campaign

PACDEX 캠페인 자료로 분석한 블랙카본을 포함한 축적모드 에어로솔의 구름응결핵 가능성

  • Lee, Si-Hye (School of Earth and Environmental Sciences, Seoul National University) ;
  • Ghim, Young-Sung (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Kim, Sang-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Yoon, Soon-Chang (School of Earth and Environmental Sciences, Seoul National University)
  • 이시혜 (서울대학교 지구환경과학부) ;
  • 김영성 (한국외국어대학교 환경학과) ;
  • 김상우 (서울대학교 지구환경과학부) ;
  • 윤순창 (서울대학교 지구환경과학부)
  • Received : 2010.05.04
  • Accepted : 2010.08.02
  • Published : 2010.08.31

Abstract

Airborne in-situ measurements of aerosol/cloud number concentrations were analyzed to investigate the effects of aerosols on warm cloud formation in the Pacific Dust Experiment (PACDEX) during April and May 2007. In the air masses originating from the Asian continent, high concentrations of fine particles including black carbon (BC) were observed when compared to other regions. A strong correlation (r=0.88) between condensation nuclei (CN) having sizes ranging from 0.1 to 1.0 mm ($CN_{0.1-1.0}$) and cloud condensation nuclei (CCN) at 0.4% supersaturation ($CCN_{0.4%}$) suggests that most of the $CN_{0.1-1.0}$ can contribute to cloud formation. The possibility of a cloud droplet formation by BC particles was expected at the high water vapor mixing ratio (WVMR) and the abundance of water-soluble components at the low altitude less than 3 km.

Keywords

References

  1. Albrecht, B.A. (1989) Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227-1230. https://doi.org/10.1126/science.245.4923.1227
  2. Andreae, M.O. and D. Rosenfeld (2008) Aerosol-cloud-precipitation interaction: Part I. The nature and sources of cloud-active aerosols, Earth Sci. Rev., 89, 13-41. https://doi.org/10.1016/j.earscirev.2008.03.001
  3. Bahreini, R., J.L. Jimenez, J. Wang, R.C. Flagan, J.H. Seinfeld, J.T. Jayne, and D.R. Worsnop (2003) Aircraft-based aerosol size and composition measurements during ACE-Asia using Aerodyne aerosol mass spectrometer, J. Geophys. Res., 108, D23, 8645, doi:10.1029/2002JD003226.
  4. Baumgardner, D., R. Subramanian, C. Twohy, J. Stith, and G. Kok (2008) Scavenging of black carbon by ice crystals over the nothern Pacific, Geophys. Res. Lett., 35, L22815, doi:10.1029/2008GL035764.
  5. Bond, T.C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D.G. Streets, and N.M. Trautmann (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000, Global Biogeochem. Cycl., 21, GB2018, doi:10.1029/2006GB002840.
  6. Cai, Y., D.C. Montaguea, W. Mooiweer-Bryana, and T. Deshler (2008) Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: Laboratory and field studies. J. Aerosol Sci,. 39, 759-769. https://doi.org/10.1016/j.jaerosci.2008.04.007
  7. Cozic, J., S. Mertes, B. Verheggen, D.J. Cziczo, S.J. Gallavardin, S. Walter, U. Baltensperger, and E. Weingartner (2008) Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds, J. Geophys. Res., 113, D15209, doi:10.1029/2007JD009266.
  8. Dusek, U., G.P. Frank, L. Hildebrandt, J. Curtius, J. Schneider, S. Walter, D. Chand, F. Drewnick, S. Hings, D. Jung, S. Borrmann, and M.O. Andreae (2006) Size matters more than chemistry for cloud-nucleating ability of aerosol particles, Science, 312, 1375-1378. https://doi.org/10.1126/science.1125261
  9. Gysel, M., S. Nyeki, E. Weingartner, U. Baltensperger, H. Giebl, R. Hitzenberger, A. Petzold, and C.W. Wilson (2003) Properties of jet engine combustion particles during the PartEmis experiment: Hygroscopicity at subsaturated conditions, Geophys. Res. Lett., 30, doi:10.1029/2003GL016896.
  10. Huebert, B.J., T. Bates, P.B. Russell, G. Shi, Y.J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima (2003) An overview of ACE-Asia: Strategies for quantifying the relationship between Asian aerosols and their climatic impacts, J. Geophy. Res., 108, D23, 8633, doi:10.1029/2003JD003550.
  11. Karcher, B., O. Mohler, P.J. DeMott, S. Pechtl, and F. Yu (2007) Insights into the role of soot aerosols in cirrus cloud formation, Atmos. Chem. Phys., 7. 4203-4227. https://doi.org/10.5194/acp-7-4203-2007
  12. Khalizov, A.F., R. Zhang, D. Zhang, H. Xue, J. Pagels, and P.H. McMurry (2009) Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor, J. Geophys. Res., 114, D05208, doi:10.1029/ 2008JD010595.
  13. Kim, B.-G. and T.-Y. Kwon (2006) Aerosol indirect effect studies from the ground-based remote sensings, J. Korean Soc. Atmos. Environ., 22(2), 235-247. (in Korean with English abstract)
  14. Kuwata, M., Y. Kondo, and N. Takegawa (2009) Critical condensed mass for activation of black carbon as cloud condensation nuclei in Tokyo, J. Geophys. Res., 114, D20202, doi:10.1029/2009JD012086.
  15. Lammel, G. and T. Novakov (1995) Water nucleation properties of carbon black and diesel soot particles, Atmos. Environ., 29, 813-823. https://doi.org/10.1016/1352-2310(94)00308-8
  16. Laursen, K.K., D.P. Jorgensen, G.P. Brasseur, S.L. Ustin, and J.R. Huning (2006) HIAPER: The next generation NSF/NCAR research aircraft, Bull. Am. Meteorol. Soc., 87, 896-909, doi:10.1175/BAMS-87-7-896.
  17. Liu, W., S.L. Kaufman, B.L. Osmondson, G.J. Sem, F.R. Quant, and D.R. Oberreit (2006) Water-based condensation particle counters for environmental monitoring of ultrafine particles, J. Air & Waste Manage. Assoc., 56(4), 444-455. https://doi.org/10.1080/10473289.2006.10464520
  18. Lohmann, U., J. Feichter, J. Penner, and R. Leaitch (2000) Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment, J. Geophys. Res., 105, 12193-12206. https://doi.org/10.1029/1999JD901199
  19. Mikhailov, E.F., S.S. Vlasenko, I.A. Podgorny, V. Ramanathan, and C.E. Corrigan (2006) Optical properties of sootwater drop agglomerates: An experimental study, J. Geophys. Res., 111, D07209, doi:10.1029/2005JD006389.
  20. Moteki, N., Y. Kondo, Y. Miyazaki, N. Takegawa, Y. Komazaki, G. Kurata, T. Shirai, D.R. Blake, T. Miyakawa, and M. Koike (2007) Evolution of mixing state of black carbon particles: Aircraft measurements over the western Pacific in March 2004, Geophys. Res. Lett., 34, L11803, doi:10.1029/2006GL028943.
  21. Popovicheva, O.B., N.M. Persiantseva, V. Tishkova, N.K. Shonija, and N.A. Zubareva (2008) Quantification of water uptake by soot particles, Environ. Res. Lett., 3, doi:10.1088/1748-9326/3/2/025009.
  22. Roberts, G. and A. Nenes (2005) A continuous-flow streamwise thermal gradient CCN chamber for airborne measurements, Aerosol Sci. Technol., 39, 206-221, doi:10.1080/027868290913988.
  23. Schwarz, J.P., R.S. Gao, D.W. Fahey, D.S. Thomson, L.A. Watts, J.C. Wilson, J.M. Reeves, M. Darbeheshti, D.G. Baumgardner, G.L. Kok, S.H. Chung, M. Schulz, J. Hendricks, A. Lauer, B. Karcher, J.G. Slowik, K.H. Rosenlof, T.L. Thompson, A.O. Langford, M. Loewenstein, and K.C. Aikin (2006) Singleparticle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res., 111, D16207, doi:10.1029/2006JD007076.
  24. Shiraiwa, M., Y. Kondo, N. Moteki, N. Takegawa, Y. Miyazaki, and D.R. Blake (2007) Evolution of mixing state of black carbon in polluted air from Tokyo, Geophys. Res. Lett., 34, L16803, doi:10.1029/2007GL029819.
  25. Spackman, J.R., J.P. Schwarz, R.S. Gao, L.A. Watts, D.S. Thomson, D.W. Fahey, J.S. Holloway, J.A. de Gouw, M. Trainer, and T.B. Ryerson (2008) Empirical correlations between black carbon aerosol and carbon monoxide in the lower and middle troposphere, Geophys. Res. Lett., 35, L19816, doi:10.1029/2008GL035237.
  26. Stith, J.L., V. Ramanathan, W.A. Cooper, G.C. Roberts, P.J. DeMott, G. Carmichael, C.D. Hatch, B. Adhikary, C.H. Twohy, D.C. Rogers, D. Baumgardner, A.J. Prenni, T. Campos, RuShan Gao, J. Anderson, and Y. Feng (2009) An overview of aircraft observati ons from the Pacific Dust Experiment campaign, J. Geophys. Res., 114, D05207, doi:10.1029/2008JD010 924.
  27. Takami, A., T. Miyoshi, A. Shimono, N. Kaneyasu, S. Kato, Y. Kajii, and S. Hatakeyama (2007) Transport of anthropogenic aerosols from Asia and subsequent chemical transformation, J. Geophys. Res., 112, D22S31, doi:10.1029/2006JD008120.
  28. Twomey, S. (1974) Pollution and the planetary albedo, Atmos. Environ., 8, 1251-1256. https://doi.org/10.1016/0004-6981(74)90004-3
  29. Twomey, S. (1977) The influence of the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149-1152. https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
  30. Zhang, D. and R. Zhang (2005) Laboratory investigation of heterogeneous interaction of sulfuric acid with soot, Environ. Sci. Technol., 39, 5722-5728. https://doi.org/10.1021/es050372d
  31. Zhang, R., A.F. Khalizov, J. Pagels, D. Zhang, H. Xue, and P.H. McMurry (2008) Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing, Proc. Natl. Acad. Sci., USA, 105, 10291-10296. https://doi.org/10.1073/pnas.0804860105

Cited by

  1. Physico-Chemical Characterization of Black Carbon Emitted from Coal-fired Power Plant, Charcoal Kiln and Diesel Vehicle vol.29, pp.2, 2013, https://doi.org/10.5572/KOSAE.2013.29.2.152
  2. A Study of Black Carbon Measurement in Metropolitan Area and Suburban Area of the Korean Peninsula Performed during Pre KORea-US Air Quality Study (KORUS-AQ) Campaign vol.31, pp.5, 2015, https://doi.org/10.5572/KOSAE.2015.31.5.472
  3. Aerosol Optical Thickness Measurements from the Microtops-II Multi-wavelength Radiometer vol.32, pp.1, 2016, https://doi.org/10.5572/KOSAE.2016.32.1.057