The Characteristics of Attachment on Pyrite Surface and Bioleaching by Indigenous Acidophilic Bacteria

토착호산성박테리아의 황철석 표면 부착과 용출 특성

  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University) ;
  • Cho, Kang-Hee (Department of Energy and Resource Engineering, Chosun University)
  • 박천영 (조선대학교 에너지자원공학과) ;
  • 조강희 (조선대학교 에너지자원공학과)
  • Received : 2009.12.09
  • Accepted : 2010.02.17
  • Published : 2010.02.28

Abstract

This study is to investigate the bioleaching of pyrite using indigenous acidophilic bacteria from the acid mine drainage. When the indigenous bacteria oxidized the pyrite, the extracellular polymeric substance (EPS) was formed and coated surface of pyrite grains. The formation of the EPS was probably secreted by the indigenous bacteria, and the EPS contributed to the bio-film function. In the EDS analysis, the elements C, O, P, S, K and Fe were detected in the EPS. Numerous indigenous bacteria, of which size range between 1.19 to 1.42 ${\mu}m$ were attached along the cracks on the pyrite surface. These bacteria are able to actively select the sites from which is most ease to gain energy through oxidation. On the pyrite-leaching medium, the pH values were higher in the bacterial sample than the control sample, whereas the Eh values were lower in the bacteria sample than in the control sample, because the indigenous acidophilic bacteria were capable of bioleaching the pyrite. The Zn content in the pyrite-leaching medium decreased with an increase in the pulp density.

본 연구는 산성광산배수에 서식하고 있는 토착호산성박테리아를 이용하여 황철석의 용출특성을 조사 하고자하였다. 토착호산성 박테리아들이 황철석을 산화시킬 때 세포외중합체물질이 황철석 표면에 그리고 황철 석 입자를 둘러쌓고 있는 것이 관찰되었다. 세포외중합체물질은 토착박테리아들에 의하여 형성된 것으로 보여 지며 생물막 기능이 있는 것으로 해석된다, 세포외중합체를 EDS분석한 결과 C, O, P, S, K 및 Fe가 검출되었다. 크기가 1.19~1.42 ${\mu}m$인 막대모양의 토착호산성 박테리아들이 황철석 표면의 파단면에 집중적으로 부착하였다. 이는 에너지를 쉽게 얻을 수 있는 장소를 박테리아들이 선택하는 것으로 보인다. 황철석-용출 배양액의 pH와 Eh 변화에서 비교시료에서 보다 박테리아 시료에서 pH 값이 낮게 그리고 Eh는 높게 나타났다. 이는 토착호산성 박테리아가 황철석을 용출하였기 때문이다. 황철석-용출 배양액의 광액농도가 증가하면 용출되는 Zn 함량이 감소하였다.

Keywords

References

  1. Bennett, J.C. and Tributsch, H., 1978, "Bacterial leaching patterns on pyrite crystal surfaces," Journal of Bacteriology, Vol. 134, pp. 310-317.
  2. Berry, V.K. and Murr, L.E., 1975, "Bacterial attachment to molybdenite: an electron microscope study," Metallurgical Transactions 6B, pp. 488-490.
  3. Berry, V.K., and Murr, L.E., 1978, "Direct Observations of bacteria and quantitative studies of their catalytic role in the leaching of low-grade, copper-bearing waste," In L.E. Murr, A.E. Torma and A. Brierley, (eds)., Merallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, Academic press, New York, pp. 103-136.
  4. Brierley, C.L., 1978, "Bacterial leaching," Critical Reviews in Microbiology, Vol. 6, pp. 207-262 https://doi.org/10.3109/10408417809090623
  5. Canfield, D.E., Kristensen, E. and Thamdrup, B., 2005, Aquatic geomicrobiology, Elsevier Academic Press, p. 640. Chapelle, F., 2001, Ground-water microbiology and geochemistry, John Wiley & Sons, Inc., p. 477.
  6. Edwards, K.J., Hu, B., Hamers, R.J. and Banfield, J.F., 2001, "A new look at microbial leaching patterns on sulfide minerals," FEMS Microbiology Ecology, Vol. 34, pp. 197-206. https://doi.org/10.1111/j.1574-6941.2001.tb00770.x
  7. Ehrlich, H.L. and Fox, S.L., 1967, "Environmental effects on bacterial copper extraction from low grade copper sulphide ores," Biotechnology and Bioengineering, Vol. 9, pp. 471-485. https://doi.org/10.1002/bit.260090404
  8. Escobar, B., Huerta, G. and Rubio, J., 1997, "Short communication: influence of LPS on the attachment of Thiobacillus ferrooxidans to minerals," World Journal of Microbiology & Biotechnology, Vol. 13, pp. 593-594. https://doi.org/10.1023/A:1018585930229
  9. Keller, L. and Murr, L.E., 1982, "Acid-bacterial and ferric sulfate leaching of pyrite single crystals," Biotechnology and Bioengineering, Vol. 24, pp. 83-96. https://doi.org/10.1002/bit.260240108
  10. Kinzler, K., Gehrke, T., Telegdi, J. and Sand, W., 2003, "Bioleaching - a result of interfacial processes caused by extracellular polymeric substances (EPS)," Hydrometallurgy, Vol. 71, pp. 83-88. https://doi.org/10.1016/S0304-386X(03)00176-2
  11. Konhauser, K., 2007, Introduction to geomicrobiology, Blackwell Publishing, p. 425.
  12. Landesman, J., Duncan, D. W. and Walden, C.C., 1966, "Iron oxidation by washed cell suspensions of the chemoautotroph, Thiobacillus ferrooxidans," Canadian Journal of Microbiology, Vol. 12, pp. 25-33. https://doi.org/10.1139/m66-005
  13. MacDonald, D.G. and Clark, R.H., 1970, "Oxidation of aqueous ferrous sulfate by Thiobacillus ferrooxidans," The Canadian Journal of Chemical Engineering, Vol. 48, pp. 669-676 https://doi.org/10.1002/cjce.5450480604
  14. McGoran, C.J.M., Duncan, D.W., and Walden, C.C., 1969, "Growth of Thiobacillus ferrooxidans on various substrates," Canadian Journal of Microbiology, Vol. 15, pp. 135-137 https://doi.org/10.1139/m69-024
  15. Murr, L.E. and Berry, V.K., 1976, "Direct observations of selective attachment of bacteria on low-grade sulfide ores and other mineral surfaces," Hydrometallurgy, Vol. 2, pp. 11-24. https://doi.org/10.1016/0304-386X(76)90010-4
  16. Omoike, A. and Chorover, J., 2006, "Adsorption to goethite of extrcellular polymeric substances from Bacillus subtilis," Geochimica et Cosmochimica Acta, Vol. 70, pp. 827-838. https://doi.org/10.1016/j.gca.2005.10.012
  17. Poliani, C. and Donati, E., 1999, "The role of exopolymers in the bioleaching of a non-ferrous metal sulphide," Journal of Industrial Microbiology & Biotechnology, Vol. 22, pp. 88-92. https://doi.org/10.1038/sj.jim.2900610
  18. Rojas-Chapana, J.A. and Tributsch, H., 2004, "Interfacial activity and leaching patterns of Lptospirillum ferrooxidans on pyrite," FEMS Microbiology Ecology, Vol. 47, pp. 19-29. https://doi.org/10.1016/S0168-6496(03)00221-6
  19. Sand, W., Gehrke, T., Hallmann, R. and, A., 1995, "Sulfur chemistry, biofilm, and the (in) direct attack mechanism-a critical evaluation of bacterial leaching," Applied Microbiology and Biotechnology, Vol. 43, pp. 961-966. https://doi.org/10.1007/BF00166909
  20. Sand, W., Gehrke, T., Jozsa, P.G. and Schippers, A., 2001, "(Bio) chemistry of bacterial leaching - direct vs indirect bioleaching," Hydrometallurgy, Vol. 59, pp. 159-175. https://doi.org/10.1016/S0304-386X(00)00180-8
  21. Schultze-Lam, S., Fortin, D., Davis, B. S. and Beveridge, T. J., 1996, "Mineralization of bacterial surface," Chemical Geology, Vol. 132. pp. 171-181. https://doi.org/10.1016/S0009-2541(96)00053-8
  22. Seidel, A., Zimmels, Y. and Armon, R., 2001, "Mechanism of bioleaching of coal fly ash by Thiobacillus ferrooxidans," Chemical Engineering Journal, Vol. 83, pp. 123-130. https://doi.org/10.1016/S1385-8947(00)00256-4
  23. Shrihari, S., Kumar, R. and Gandhi, K.S., 1990, "Modelling of $Fe^{2+}$ oxidation by Thiobacillus ferrooxidans," Applied and Microbiology Biotechnology, Vol. 33, pp. 524-528
  24. Southwood, M.J. and Southwood, A.J., 1986, "Mineralogical observations on the bacterial leaching of auriferous pyrite," In R.W. Lawrence, R.M.R. Branion, and H.E. Ebner (eds.), Fundamental and Applied Biohydrometallurgy, Elsevier, New York. pp. 98-113.
  25. Torma, A.E., Walden, C.C., and Branion, R.M.R., 1970, "Microbiological leaching of a zinc sulfide concentrate," Biotechnology and Bioengineering, Vol. 12, pp. 501-517. https://doi.org/10.1002/bit.260120403
  26. Torma, A.E., Walden, C.C., Duncan, D.W. and Branion, R.M.R., 1972, "The effect of carbon dioxide and particle surface area on the microbiological leaching of a zinc sulphide concentrate," Biotechnology and Bioengineering, Vol. 14, pp. 777-786. https://doi.org/10.1002/bit.260140507
  27. Torma, A.E., 1988, "Leaching of metals," Biotechnology, Vol. 6B, pp. 367-399.
  28. Tributsch, H. and Rojas-Chapana, J. A., 2000, "Metal sulfide semiconductor electrochemical mechanisma induced by bacterial activity," Electrochimica Acta, Vol. 45, pp. 4705-4716. https://doi.org/10.1016/S0013-4686(00)00623-X
  29. Tributsch, H., 2001, "Direct versus indirect bioleaching," Hydrometallurgy, Vol. 59, pp. 177-185. https://doi.org/10.1016/S0304-386X(00)00181-X
  30. Widler, A.M. and Seward, T.M., 2002, "The adsorption of gold (1) hydrosulphide complexes by iron sulphide surfaces," Geochimica et Cosmochimica Acta, Vol. 66, pp. 383-402. https://doi.org/10.1016/S0016-7037(01)00791-8