DOI QR코드

DOI QR Code

재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 강도 및 균열저항 특성

Strength and Crack Resistance Properties of Fiber Reinforced Concrete Mixed with Recycled PET Fiber

  • 김성배 (연세대학교 토목공학과) ;
  • 김현영 (연세대학교 토목공학과) ;
  • 이나현 (연세대학교 토목공학과) ;
  • 김장호 (연세대학교 사회환경시스템공학부)
  • 투고 : 2009.07.23
  • 심사 : 2009.12.04
  • 발행 : 2010.01.30

초록

본 연구의 목적은 폐 PET병을 재활용하여 만든 섬유(RPET)를 콘크리트 부재에 적용시키기 위한 성능 평가에 있다. RPET 섬유보강 효과를 평가하기 위해서 압축강도, 탄성계수, 쪼갬인장강도와 같은 기초물성실험과 건조수축균열실험을 수행하였다. 기초물성실험에서 RPET의 혼입률이 증가할수록 RPET 보강 콘크리트의 압축강도와 탄성계수는 감소하였고, 쪼갬인장강도는 증가하였다. 건조수축 실험에서 자유건조수축은 증가하였다. 반면에 구속건조수축의 경우 RPET 섬유에 의한 인장 저항성의 증가로 인해 균열 발생을 지연시켰다. RPET 섬유와 PP 섬유를 혼입한 콘크리트 시편의 특성을 비교해보면 두 섬유가 유사하다는 것을 알 수 있다. 따라서 RPET 섬유는 PP 섬유의 대체 재료로서 충분할 뿐만 아니라 폐 PET병을 재활용하고 환경오염을 저감시킨다는 측면에서 친환경적으로 더 뛰어나다는 것을 알 수 있다.

The main objective of this study was to evaluate the effect of recycled PET (RPET) fiber made from waste PET bottles to examine application on concrete member. To evaluate the reinforcement effect of RPET fiber in concrete member, experimental tests were performed, such as mechanical property tests (compressive strength, modulus of elasticity and splitting tensile strength) and drying shrinkage test. In mechanical property tests, compressive strength and modulus of elasticity in concrete mixed with RPET fiber gradually decreased, but splitting tensile strength gradually increased as volume fraction of fiber increased. In drying shrinkage test, free drying shrinkage increased. In restrained case, in contrast, crack occurrence was delayed because of tensile resistance increase by RPET fiber. The comparison of RPET and PP fiber added concrete specimen's properties showed that two materials had similar properties. In conclusion, RPET fiber is an alternative material of PP fiber, even finer for its excellence in eco-friendliness due to the recycling of waste PET bottles and its possible contribution to the pollution declination.

키워드

참고문헌

  1. 원종필, 박찬기, 김윤정, 박경훈, "화학적 친수성 처리율에 따른 재생 PET섬유와 시멘트 복합재료와의 계면 인발 특성", 한국콘크리트학회 논문집, Vol. 19, No. 3, 2007a, pp. 333-339.
  2. 원종필, 박찬기, 김황희, 이상우, "재생 PET 섬유의 형상 및 길이가 시멘트 복합 재료의 소성 수축 균열에 미치는 영향", 한국콘크리트학회 논문집, Vol. 19, No. 2, 2007b, pp. 233-239.
  3. 원종필, 박찬기, 김황희, 이상우, "재생 PET 섬유의 친수성표면처리에 따른 시멘트 복합재료의 소성수축균열제어 효과", 대한토목학회논문집, 제27권 3A호, 2007c, pp. 413-419.
  4. 원종필, 박찬기, 이수진, 김정훈, 김황희, 이재영, "폐 PET병을 이용한 콘크리트 보강 섬유의 부착특성", 한국콘크리트학회 논문집, Vol. 18, No. 1, 2006, pp. 373-376.
  5. 한국자원리사이클링학회, 리사이클링백서, 청문각, 2008.
  6. 한국 PET 용기협회, 2008,(http://www.kpcaa.or.kr)
  7. Altun, F., Haktanir, T. and Ari, K., "Effects of steel fiber addition on mechanical properties of concrete and RC beams", Construction and Building Materials, Vol. 21, No. 3, 2007, pp. 654-661. https://doi.org/10.1016/j.conbuildmat.2005.12.006
  8. Banthia, N. and Sheng, J., "Fracture toughness of micro-fiber reinforced cement composites", Cement and Concrete Composites, Vol. 18, No. 4, 1996, pp. 251-269. https://doi.org/10.1016/0958-9465(95)00030-5
  9. Bayasi, M.Z. and Zeng, J., "Composite slab construction utilizing carbon fiber reinforced mortar", ACI Structural Journal, Vol. 94, No. 4, 1997, pp. 442-446.
  10. Cengiz, O. and Turanli, L., "Comparative evaluation of steel mesh, steel fibreand high-performance polypropylene fibre reinforced shotcrete in panel test", Cement and Concrete Research, Vol. 34, No. 8, 2004, pp. 1357-1364. https://doi.org/10.1016/j.cemconres.2003.12.024
  11. Choi, Y.W., Moon, D.J., Chung, J.S. and Cho, S.K., "Effects of waste PET bottles aggregate on the properties of concrete", Cement and Concrete Research, Vol. 35, No. 4, 2004, pp. 776-781.
  12. Jo, B.W., Park, S.K. and Park, J.C., "Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates", Construction and Building Materials, Vol. 22, No. 12, 2008, pp. 2281-2291. https://doi.org/10.1016/j.conbuildmat.2007.10.009
  13. Jo, B.W., Tae, G.H. and Kim, C.H., "Uniaxial creep behavior and prediction of recycled-PET polymer concrete", Construction and Building Materials, Vol. 21, No. 7, 2007, pp. 1552-1559. https://doi.org/10.1016/j.conbuildmat.2005.10.003
  14. Mu, B., Li, Z. and Peng, J., "Short fiber-reinforced cementitious extruded plates with high percentage of slag and different fibers", Cement and Concrete Research, Vol. 30, No. 8, 2000, pp. 1277-1282. https://doi.org/10.1016/S0008-8846(00)00333-1
  15. Ohno T. and Uomoto T., "Prediction of occurrence of cracks due to autogeneous shrinkage and drying shrinkage", Japan society of civil engineers, Vol. 49, 2000, pp. 29-44.
  16. Ravindrarajah, R.S. and Tam, C.T., "Flexural strength of steel fibre reinforced concrete beams", International Journal of Cement Composites and Lightweight Concrete, Vol. 6, No. 4, 1984, pp. 273-278. https://doi.org/10.1016/0262-5075(84)90022-8
  17. Rebeiz, K.S., "Time–temperature properties of polymer concrete using recycled PET", Cement and Concrete Composites, Vol. 17, No. 2, 1995, pp. 119-124. https://doi.org/10.1016/0958-9465(94)00004-I
  18. Rebeiz, K.S. and Fowler, D.W., "Flexural strength of reinforced polymer concrete made with recycled plastic waste", ACI Structural Journal, Vol. 93, No. 5, 1996, pp. 524-530.
  19. Rebeiz, K.S., Serhal, S. and Fowler, D.W., "Shear behavior of steel reinforced polymer concrete using recycled plastic", ACI Structural Journal. Vol. 90, No. 6, 1993b, pp. 675-682.
  20. Reichard T.W., "Creep and Drying Shrinkage of Lightweight and Normal Weight Concrete", Monograph No. 74, National Bureau of Standards, Washington, 1964.
  21. Silva, D.A., Betioli, A.M., Gleize, P.J.P., "Degradation of recycled PET fibers in Portland cement-based materials", Cement and Concrete Research, Vol. 35, No. 9, 2005, pp. 1741-1746. https://doi.org/10.1016/j.cemconres.2004.10.040
  22. Zollo, R.F., "Fiber-reinforced concrete: an overview after 30 years of development", Cement and Concrete Composites, Vol. 19, No. 2, 1997, pp. 107-122. https://doi.org/10.1016/S0958-9465(96)00046-7